137 lines
5.7 KiB
Python
137 lines
5.7 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import pv_input as pv
|
|
import pandas as pd
|
|
|
|
class Producer:
|
|
def __init__(self, quantity, profile_type):
|
|
self.quantity = quantity
|
|
self.profile_type = profile_type
|
|
self.consumption_profile = self.create_consumption_profile()
|
|
self.production_profile = self.create_production_profile()
|
|
self.final_consumption = self.calculate_final_consumption()
|
|
self.final_production = self.calculate_final_production()
|
|
|
|
# Vebrauchsprofile aus CSV-Datei in Dataframe einlesen und je nach profile_type die entsprechende Leistungs-Series extrahieren
|
|
def create_consumption_profile(self):
|
|
if self.profile_type == 'std':
|
|
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
|
|
return consumption_profile['Leistung']*1000
|
|
elif self.profile_type == 'wp':
|
|
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
|
|
return consumption_profile['Leistung_WP']*1000
|
|
elif self.profile_type == 'ea':
|
|
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
|
|
return consumption_profile['Leistung_EA']*1000
|
|
|
|
# Verbrauchsprofil mit der Anzahl der entsprechenden Haushalte multiplizieren
|
|
def calculate_final_consumption(self):
|
|
final_consumption = self.consumption_profile.mul(self.quantity)
|
|
return final_consumption
|
|
|
|
# Erzegungsprofil über PV_Input.py erstelln, in .csv schreiben und von dort dann die Leistungs-Series extrahieren
|
|
def create_production_profile(self):
|
|
production_profile = pv.create_production_profile()
|
|
production_profile.to_csv('production_profile.csv', sep=';',header=['Leistung'])
|
|
production_profile = pd.read_csv('production_profile.csv',delimiter=';')
|
|
return production_profile['Leistung']
|
|
|
|
# Erzeugungsprofil mit der Anzahl der entsprechenden Haushalte multiplizieren
|
|
def calculate_final_production(self):
|
|
final_production = self.production_profile.mul(self.quantity)
|
|
return final_production
|
|
|
|
|
|
|
|
class Consumer:
|
|
def __init__(self, quantity, profile_type):
|
|
self.quantity = quantity
|
|
self.profile_type = profile_type
|
|
self.consumption_profile = self.create_consumption_profile()
|
|
self.final_consumption = self.calculate_final_consumption()
|
|
|
|
# Vebrauchsprofile aus CSV-Datei in Dataframe einlesen und je nach profile_type die entsprechende Leistungs-Series extrahieren
|
|
def create_consumption_profile(self):
|
|
if self.profile_type == 'std':
|
|
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
|
|
return consumption_profile['Leistung']*1000
|
|
elif self.profile_type == 'wp':
|
|
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
|
|
return consumption_profile['Leistung_WP']*1000
|
|
elif self.profile_type == 'ea':
|
|
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
|
|
return consumption_profile['Leistung_EA']*1000
|
|
|
|
|
|
# Verbrauchsprofil mit der Anzahl der entsprechenden Haushalte multiplizieren
|
|
def calculate_final_consumption(self):
|
|
final_consumption = self.consumption_profile.mul(self.quantity)
|
|
return final_consumption
|
|
|
|
|
|
|
|
class Neighborhood:
|
|
def __init__(self, producers, consumers):
|
|
self.producers = producers if isinstance(producers, list) else [producers]
|
|
self.consumers = consumers if isinstance(consumers, list) else [consumers]
|
|
|
|
# Gesamterzeugung, Gesamtverbrauch und Nettoverbrauch plotten
|
|
def plot_consumption(self):
|
|
total_consumption = 0
|
|
total_production = 0
|
|
# Verbrauch der Consumer subtrahieren
|
|
for consumer in self.consumers:
|
|
total_consumption -= consumer.final_consumption
|
|
# Zusätzlich Verbrauch der Producer subtrahieren
|
|
for producer in self.producers:
|
|
total_consumption -= producer.final_consumption
|
|
# Produktion der Producer addieren
|
|
for producer in self.producers:
|
|
total_production += producer.final_production
|
|
# Netto-Erzeugnis ausrechnen
|
|
net_value = total_consumption + total_production
|
|
# Rollendes Mittel des netto-Erzeugnisses ausrechnen
|
|
net_value_mean = net_value.rolling(24).mean()
|
|
|
|
|
|
# X-Werte anlegen, einen Wert löschen da 8761 Werte vorhanden sind, aber nur 8760 benötigt werden
|
|
x = pd.date_range(start='2018-12-31', end ='2019-12-31', freq='1h')
|
|
x = x[:-1]
|
|
|
|
# Plot dimensionieren
|
|
plt.figure(figsize=(15, 9))
|
|
|
|
# Barplots anlegen
|
|
plt.bar(x, total_consumption)
|
|
plt.bar(x, total_production,color='orange')
|
|
|
|
# Linienplot anlegen
|
|
#plt.plot(x, net_value,'-',color='darkgreen')
|
|
plt.plot(x, net_value_mean,'-',color='darkgreen')
|
|
|
|
# Achsenbeschriftungen anlegen
|
|
plt.xlabel('Kalendertag')
|
|
plt.ylabel('Leistung (W)')
|
|
|
|
# Titel anlegen
|
|
#plt.title('Netto-leistung Nachbarschaft - Fall XXX')
|
|
plt.title('Erzeugung, Verbrauch und Netto-Leistung (Rollendes Mittel 24h) - Fall XXX')
|
|
|
|
# X-Ticks nur monatlich plotten
|
|
monthly_ticks = pd.date_range(start='2018-12-31', end ='2019-12-31', freq='1MS')
|
|
plt.xticks(monthly_ticks)
|
|
|
|
# Legende anlegen
|
|
plt.legend(['Netto-Leistung', 'Leistung Verbrauch', 'Leistung Erzeugung'], loc='upper right')
|
|
|
|
# X-Labels rotieren
|
|
plt.xticks(rotation=45)
|
|
|
|
# Grid anlegen
|
|
plt.axhline(linewidth=1, color='black')
|
|
plt.grid(color='black', axis='y', linestyle='--', linewidth=0.5)
|
|
plt.show()
|
|
|
|
|
|
|
|
|