Files
Seminar_Smartgrids/neighborhood.py

137 lines
5.7 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import pv_input as pv
import pandas as pd
class Producer:
def __init__(self, quantity, profile_type):
self.quantity = quantity
self.profile_type = profile_type
self.consumption_profile = self.create_consumption_profile()
self.production_profile = self.create_production_profile()
self.final_consumption = self.calculate_final_consumption()
self.final_production = self.calculate_final_production()
# Vebrauchsprofile aus CSV-Datei in Dataframe einlesen und je nach profile_type die entsprechende Leistungs-Series extrahieren
def create_consumption_profile(self):
if self.profile_type == 'std':
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
return consumption_profile['Leistung']*1000
elif self.profile_type == 'wp':
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
return consumption_profile['Leistung_WP']*1000
elif self.profile_type == 'ea':
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
return consumption_profile['Leistung_EA']*1000
# Verbrauchsprofil mit der Anzahl der entsprechenden Haushalte multiplizieren
def calculate_final_consumption(self):
final_consumption = self.consumption_profile.mul(self.quantity)
return final_consumption
# Erzegungsprofil über PV_Input.py erstelln, in .csv schreiben und von dort dann die Leistungs-Series extrahieren
def create_production_profile(self):
production_profile = pv.create_production_profile()
production_profile.to_csv('production_profile.csv', sep=';',header=['Leistung'])
production_profile = pd.read_csv('production_profile.csv',delimiter=';')
return production_profile['Leistung']
# Erzeugungsprofil mit der Anzahl der entsprechenden Haushalte multiplizieren
def calculate_final_production(self):
final_production = self.production_profile.mul(self.quantity)
return final_production
class Consumer:
def __init__(self, quantity, profile_type):
self.quantity = quantity
self.profile_type = profile_type
self.consumption_profile = self.create_consumption_profile()
self.final_consumption = self.calculate_final_consumption()
# Vebrauchsprofile aus CSV-Datei in Dataframe einlesen und je nach profile_type die entsprechende Leistungs-Series extrahieren
def create_consumption_profile(self):
if self.profile_type == 'std':
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
return consumption_profile['Leistung']*1000
elif self.profile_type == 'wp':
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
return consumption_profile['Leistung_WP']*1000
elif self.profile_type == 'ea':
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
return consumption_profile['Leistung_EA']*1000
# Verbrauchsprofil mit der Anzahl der entsprechenden Haushalte multiplizieren
def calculate_final_consumption(self):
final_consumption = self.consumption_profile.mul(self.quantity)
return final_consumption
class Neighborhood:
def __init__(self, producers, consumers):
self.producers = producers if isinstance(producers, list) else [producers]
self.consumers = consumers if isinstance(consumers, list) else [consumers]
# Gesamterzeugung, Gesamtverbrauch und Nettoverbrauch plotten
def plot_consumption(self):
total_consumption = 0
total_production = 0
# Verbrauch der Consumer subtrahieren
for consumer in self.consumers:
total_consumption -= consumer.final_consumption
# Zusätzlich Verbrauch der Producer subtrahieren
for producer in self.producers:
total_consumption -= producer.final_consumption
# Produktion der Producer addieren
for producer in self.producers:
total_production += producer.final_production
# Netto-Erzeugnis ausrechnen
net_value = total_consumption + total_production
# Rollendes Mittel des netto-Erzeugnisses ausrechnen
net_value_mean = net_value.rolling(24).mean()
# X-Werte anlegen, einen Wert löschen da 8761 Werte vorhanden sind, aber nur 8760 benötigt werden
x = pd.date_range(start='2018-12-31', end ='2019-12-31', freq='1h')
x = x[:-1]
# Plot dimensionieren
plt.figure(figsize=(15, 9))
# Barplots anlegen
plt.bar(x, total_consumption)
plt.bar(x, total_production,color='orange')
# Linienplot anlegen
#plt.plot(x, net_value,'-',color='darkgreen')
plt.plot(x, net_value_mean,'-',color='darkgreen')
# Achsenbeschriftungen anlegen
plt.xlabel('Kalendertag')
plt.ylabel('Leistung (W)')
# Titel anlegen
#plt.title('Netto-leistung Nachbarschaft - Fall XXX')
plt.title('Erzeugung, Verbrauch und Netto-Leistung (Rollendes Mittel 24h) - Fall XXX')
# X-Ticks nur monatlich plotten
monthly_ticks = pd.date_range(start='2018-12-31', end ='2019-12-31', freq='1MS')
plt.xticks(monthly_ticks)
# Legende anlegen
plt.legend(['Netto-Leistung', 'Leistung Verbrauch', 'Leistung Erzeugung'], loc='upper right')
# X-Labels rotieren
plt.xticks(rotation=45)
# Grid anlegen
plt.axhline(linewidth=1, color='black')
plt.grid(color='black', axis='y', linestyle='--', linewidth=0.5)
plt.show()