Files
Seminar_Smartgrids/neighborhood.py
2025-01-07 16:02:19 +01:00

112 lines
4.3 KiB
Python

# https://stackoverflow.com/questions/63511090/how-can-i-smooth-data-in-python
import numpy as np
import matplotlib.pyplot as plt
import pv_input as pv
import pandas as pd
from scipy.signal import savgol_filter
class Producer:
def __init__(self, quantity):
self.quantity = quantity
self.consumption_profile = self.create_consumption_profile()
self.production_profile = self.create_production_profile()
self.final_consumption = self.calculate_final_consumption()
self.final_production = self.calculate_final_production()
# Vebrauchsprofil aus CSV-Datei in Dataframe einlesen und die Leistungs-Series extrahieren
def create_consumption_profile(self):
consumption_profile = pd.read_csv('Lastprofil_final_H0.csv',delimiter=';')
return consumption_profile['Leistung']
# Verbrauchsprofil mit der Anzahl der Haushalte multiplizieren
def calculate_final_consumption(self):
final_consumption = self.consumption_profile.mul(self.quantity)
return final_consumption
# Erzegungsprofil über PV_Input.py erstelln, in .csv schreiben und von dort dann die Leistungs-Series extrahieren
def create_production_profile(self):
production_profile = pv.create_production_profile()
production_profile.to_csv('production_profile.csv', sep=';',header=['Leistung'])
production_profile = pd.read_csv('production_profile.csv',delimiter=';')
return production_profile['Leistung']
# Erzeugungsprofil mit der Anzahl der Haushalte multiplizieren
def calculate_final_production(self):
final_production = self.production_profile.mul(self.quantity)
return final_production
class Consumer:
def __init__(self, quantity):
self.quantity = quantity
self.consumption_profile = self.create_consumption_profile()
self.final_consumption = self.calculate_final_consumption()
# Vebrauchsprofil aus CSV-Datei in Dataframe einlesen und die Leistungs-Series extrahieren, Werte in Watt umrechnen
def create_consumption_profile(self):
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
return consumption_profile['Leistung']*1000
# Verbrauchsprofil mit der Anzahl der Haushalte multiplizieren
def calculate_final_consumption(self):
final_consumption = self.consumption_profile.mul(self.quantity)
return final_consumption
class Neighborhood:
def __init__(self, producer, consumer):
self.producer = producer
self.consumer = consumer
# Gesamterzeugung, Gesamtverbrauch und Nettoverbrauch plotten
def plot_consumption(self):
total_consumption = -1*(self.consumer.final_consumption + self.producer.final_consumption)
total_production = self.producer.final_production
net_value = total_consumption + total_production
net_value_mean = net_value.rolling(168).mean()
net_value_filtered = net_value.apply(savgol_filter, window_length=168, polyorder=2)
# X-Werte anlegen, einen Wert löschen da 8761 Werte vorhanden sind, aber nur 8760 benötigt werden
x = pd.date_range(start='2018-12-31', end ='2019-12-31', freq='1h')
x = x[:-1]
# Plot dimensionieren
plt.figure(figsize=(15, 9))
# Barplot anlegen
#plt.bar(x, total_consumption)
#plt.bar(x, total_production,color='orange')
#plt.bar(x, net_value,color='forestgreen')
# Rollendes Mittel plotten
#plt.plot(x, net_value_mean,'-',color='forestgreen')
# Titel und Achsenbeschriftungen anlegen
plt.xlabel('Kalendertag')
plt.ylabel('Leistung (W)')
#plt.title('Nettoleistung Nachbarschaft Standardfalll')
plt.title('Rollendes Mittel (7 Tage) Netto-Leistung Nachbarschaft Standardfall')
# X-Ticks nur monatlich plotten
monthly_ticks = pd.date_range(start='2018-12-31', end ='2019-12-31', freq='1MS')
plt.xticks(monthly_ticks)
# Legende anlegen
#plt.legend(['Verbrauch', 'Erzeugung'], loc='upper right')
#plt.legend(['Verbrauch', 'Erzeugung', 'Netto-Wert'], loc='upper right')
# X-Labels rotieren
plt.xticks(rotation=45)
# Grid anlegen
plt.grid(color='black', axis='y', linestyle='--', linewidth=0.5)
plt.show()