PV-Simulation funktioniert

This commit is contained in:
Patrick Hangl
2024-12-12 15:03:10 +01:00
parent 0570f8b515
commit 3ad2e47361

View File

@@ -1,67 +1,39 @@
import pandas as pd
import pvlib
import pandas as pd
import matplotlib.pyplot as plt
from pvlib.modelchain import ModelChain
from pvlib.location import Location
from pvlib.pvsystem import PVSystem
from pvlib.temperature import TEMPERATURE_MODEL_PARAMETERS
# Standortbedingungen (z.B. München, Deutschland)
latitude = 48.1351
longitude = 11.5820
tz = 'Europe/Berlin'
latitude = 47.2675
longitude = 11.3910
tz = 'Europe/Vienna'
surface_tilt = 0
surface_azimuth = 180
# Abrufen der Wetter- und Strahlungsdaten für den Standort von PVGIS
weather_data, meta = pvlib.iotools.get_pvgis_tmy(latitude, longitude)
database_module = pvlib.pvsystem.retrieve_sam('SandiaMod')
database_inverter = pvlib.pvsystem.retrieve_sam('CECInverter')
# Zeitstempel setzen und Zeitzonenkonvertierung
weather_data.index = weather_data.index.tz_localize(tz)
module = database_module['Canadian_Solar_CS5P_220M___2009_']
inverter = database_inverter['ABB__PVI_4_2_OUTD_US__208V_']
modules_per_string = 10
strings_per_inverter = 2
# PV Modulbedingungen
module_parameters = {
'pdc0': 240,
'gamma_pdc': -0.004
}
temperature_parameters = TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_glass']
# Wechselrichterbedingungen
inverter_parameters = {
'pdc0': 240,
'eta_inv_nom': 0.96
}
location = Location(latitude, longitude, tz)
system = PVSystem(surface_tilt=surface_tilt, surface_azimuth=surface_azimuth, module_parameters=module,
inverter_parameters=inverter, temperature_model_parameters=temperature_parameters,
modules_per_string=modules_per_string, strings_per_inverter=strings_per_inverter)
# Erstellung des Standort-Objekts
site = pvlib.location.Location(latitude, longitude, tz=tz)
modelchain = ModelChain(system, location)
# Solarpositions-Array
solar_position = site.get_solarposition(weather_data.index)
times = pd.date_range(start='2021-07-01', end ='2021-07-07', freq='1min', tz=location.tz)
# Erstellen eines PV-Systems
system = pvlib.pvsystem.PVSystem(
surface_tilt=30,
surface_azimuth=180,
module_parameters=module_parameters,
inverter_parameters=inverter_parameters
)
clear_sky = location.get_clearsky(times)
#clear_sky.plot(figsize=(16,9))
# Berechnen der Einfallswinkelmodifikatoren (AOI)
mc = system.get_aoi(solar_position['apparent_zenith'], solar_position['azimuth'])
# Berechnen der Strahlungswerte auf der Moduloberfläche
poa_irrad = system.get_irradiance(weather_data['Gb(n)'], weather_data['G(h)'], weather_data['Gd(h)'], mc)
# Modellierung der Zelltemperatur
tcell = pvlib.temperature.sapm_cell(poa_irrad['poa_global'], weather_data['T2m'], weather_data['WS10m'])
# Modellierung der DC-Leistung
dc_power = system.pvwatts_dc(poa_irrad['poa_global'], tcell)
# Modellierung der AC-Leistung
ac_power = system.pvwatts_ac(dc_power)
# Jahresertrag berechnen
annual_energy = ac_power.sum() / 1000 # kWh
print(f"Jährlicher Output: {annual_energy:.2f} kWh")
# Plot der Ergebnisse
ac_power.plot()
plt.ylabel('AC Leistung (W)')
plt.xlabel('Datum')
plt.title('Täglicher Ertrag einer PV-Anlage in kWh')
modelchain.run_model(clear_sky)
modelchain.results.ac.plot(figsize=(16,9))
plt.show()