Einlesen .csv angepasst
This commit is contained in:
@@ -1,7 +1,9 @@
|
|||||||
|
# https://stackoverflow.com/questions/63511090/how-can-i-smooth-data-in-python
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import pv_input as pv
|
import pv_input as pv
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
from scipy.signal import savgol_filter
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -43,10 +45,10 @@ class Consumer:
|
|||||||
self.consumption_profile = self.create_consumption_profile()
|
self.consumption_profile = self.create_consumption_profile()
|
||||||
self.final_consumption = self.calculate_final_consumption()
|
self.final_consumption = self.calculate_final_consumption()
|
||||||
|
|
||||||
# Vebrauchsprofil aus CSV-Datei in Dataframe einlesen und die Leistungs-Series extrahieren, Werte in Watt umrechnen und mit 4 multiplizieren, da Originalwerte 15-minütlich waren
|
# Vebrauchsprofil aus CSV-Datei in Dataframe einlesen und die Leistungs-Series extrahieren, Werte in Watt umrechnen
|
||||||
def create_consumption_profile(self):
|
def create_consumption_profile(self):
|
||||||
consumption_profile = pd.read_csv('Lastprofil_final_H0.csv',delimiter=';')
|
consumption_profile = pd.read_csv('Lastprofile_gesamt.csv',delimiter=';')
|
||||||
return consumption_profile['Leistung']*1000*4
|
return consumption_profile['Leistung']*1000
|
||||||
|
|
||||||
# Verbrauchsprofil mit der Anzahl der Haushalte multiplizieren
|
# Verbrauchsprofil mit der Anzahl der Haushalte multiplizieren
|
||||||
def calculate_final_consumption(self):
|
def calculate_final_consumption(self):
|
||||||
@@ -63,11 +65,10 @@ class Neighborhood:
|
|||||||
# Gesamterzeugung, Gesamtverbrauch und Nettoverbrauch plotten
|
# Gesamterzeugung, Gesamtverbrauch und Nettoverbrauch plotten
|
||||||
def plot_consumption(self):
|
def plot_consumption(self):
|
||||||
total_consumption = -1*(self.consumer.final_consumption + self.producer.final_consumption)
|
total_consumption = -1*(self.consumer.final_consumption + self.producer.final_consumption)
|
||||||
total_consumption_mean = total_consumption.rolling(168).mean()
|
|
||||||
total_production = self.producer.final_production
|
total_production = self.producer.final_production
|
||||||
total_production_mean = total_production.rolling(168).mean()
|
|
||||||
net_value = total_consumption + total_production
|
net_value = total_consumption + total_production
|
||||||
net_value_mean = net_value.rolling(168).mean()
|
net_value_mean = net_value.rolling(168).mean()
|
||||||
|
net_value_filtered = net_value.apply(savgol_filter, window_length=168, polyorder=2)
|
||||||
|
|
||||||
# X-Werte anlegen, einen Wert löschen da 8761 Werte vorhanden sind, aber nur 8760 benötigt werden
|
# X-Werte anlegen, einen Wert löschen da 8761 Werte vorhanden sind, aber nur 8760 benötigt werden
|
||||||
x = pd.date_range(start='2018-12-31', end ='2019-12-31', freq='1h')
|
x = pd.date_range(start='2018-12-31', end ='2019-12-31', freq='1h')
|
||||||
|
|||||||
Reference in New Issue
Block a user