{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "9c3a0b4a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 0, 0, 0, 0, 0, 0, 0, 0]\n" ] }, { "data": { "text/plain": [ "[0, 0, 0, 0, 0, 0, 0, 0, 0]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# FIR Filter anlegen\n", "\n", "from scipy import signal\n", "from scipy.fft import fft, fftfreq\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from ipywidgets import interact\n", "\n", "\n", "def fir_filter(taps, input): # taps, input sind 1d Eingabelisten mit Koeffizienten und Samples\n", " fir=[] # Ausgabeliste anlegen\n", " for j in range(0, len(input) - len(taps)): # Erste Samples (Koeffizientenzahl) zählen nicht zur Filterantwort\n", " fir_i=0\n", " for i in range (len(taps)): # Durch Koeffizienten durchiterieren\n", " taps_i = taps[i] # taps_i ist Laufvariable\n", " fir_i += taps_i*input[j+i] # fir_i ist Laufvariable für Filterergebnis - jeweiliger Koeffizient wird mit dem i-ten Input-Sample der reduzierten Liste j multipliziert\n", " fir.append(fir_i) # hänge Ergebnis an Ergebnisliste an\n", " return fir\n" ] }, { "cell_type": "code", "execution_count": null, "id": "3f78fe4f", "metadata": {}, "outputs": [], "source": [ "# Chirp Generator\n", "\n", "n=3000 # number of samples to use for the chirp\n", "fs=20000 # The sampling rate for the chrip\n", "f0=100# the start frequency in Hz for the chirp\n", "f1=1000 # the stop frequency of the chirp\n", "t1=n/fs # the total length of the chirp in s\n", "\n", "t_chrip = np.linspace(0, t1, n)\n", "# generate a chrip and scale to int16 (1 bit for sign)\n", "y_chrip = np.round(signal.chirp(t_chrip, f0=f0, f1=f1, t1=t1, method='linear')*(2**15-1)).astype(int)\n", "cutsamps = 45\n", "y_chrip = y_chrip[cutsamps:]\n", "t_chrip = t_chrip[cutsamps:]\n", "\n", "# Generate an array were the data is present in an interleaved format with the inverted signal \n", "y_chrip_interleaved = np.empty((2*y_chrip.size), dtype=y_chrip.dtype)pa\n", "y_chrip_interleaved[0::2] = y_chrip\n", "y_chrip_interleaved[1::2] = -1*y_chrip[::-1]\n", "\n", "file_str= f\"#define CHIRP_DATA_SAMPLE_RATE {int(fs)}\\n\"\\\n", " \"#define CHIRP_DATA_LEN\"f\" {y_chrip.size}\" \"\\n\"\\\n", " \"#define CHIRP_DATA_INTERLEAVED_LEN\"f\" {y_chrip_interleaved.size}\" \"\\n\"\\\n", " \"#define CHIRP_DATA {\" + \",\".join(y_chrip.astype(str)) +\"}\\n\"\\\n", " \"#define CHIRP_DATA_INTERLEAVED_INVERTED {\" + \",\".join(y_chrip_interleaved.astype(str)) +\"}\" \"\\n\"\n", "\n", "with open(\"pcm_chirp/include/chirp_data.h\", \"w\") as f:\n", " f.write(file_str)" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 5 }