Calc-Funktion weiter, unnötige Funktionen auskommentiert (kompiliert)
This commit is contained in:
@@ -8,13 +8,12 @@ static int mu;
|
||||
static int leak=2147462173; //0.999 // (1 ? <20>?)
|
||||
|
||||
// Int Arrays für Delay Line (Acc-Sensor Samples) sowie Filterkoeffizienten anlegen
|
||||
int chess_storage(DMB) delay_line[MAX_FIR_COEFFS];
|
||||
int chess_storage(DMA % (sizeof(long long))) filter_coefficients[MAX_FIR_COEFFS];
|
||||
int chess_storage(DMB) sample_line[MAX_FIR_COEFFS];
|
||||
int chess_storage(DMA % (sizeof(long long))) coefficient_line[MAX_FIR_COEFFS];
|
||||
|
||||
// Structs für Pointerinkrementierung auf Delay Line- und Koeffizieten-Arrays anlegen
|
||||
BufferPtrDMB chess_storage(DMB) pointer_delay_line;
|
||||
BufferPtr pointer_filter_coefficients;
|
||||
|
||||
BufferPtrDMB chess_storage(DMB) pointer_sample_line;
|
||||
BufferPtr pointer_coefficient_line;
|
||||
|
||||
|
||||
#ifdef PLATFORM_GENERIC
|
||||
@@ -70,6 +69,69 @@ BufferPtr pointer_filter_coefficients;
|
||||
}
|
||||
#endif
|
||||
|
||||
//Allgemeinen Buffer um bestimmten Eingabewert inkrementieren - nicht in Verwendung
|
||||
/* void increment_buffer(BufferPtr *buffer, int i_incr){
|
||||
buffer->ptr_current = cyclic_add(buffer->ptr_current, i_incr, buffer->ptr_start, buffer->buffer_len);
|
||||
}
|
||||
*/
|
||||
//DMB-Buffer um bestimmten Eingabewert inkrementieren - nicht in Verwendung
|
||||
/* void increment_buffert_DMB(BufferPtrDMB *buffer, int i_incr){
|
||||
buffer->ptr_current = cyclic_add(buffer->ptr_current, i_incr, buffer->ptr_start, buffer->buffer_len);
|
||||
} */
|
||||
|
||||
//Übergabeblock in allgemeinen Buffer schreiben und Buffer inkrementieren - nicht in Verwendung
|
||||
//void static inline write_buffer_block(BufferPtr *buffer, int* block){
|
||||
// for (int i=0; i<BLOCK_LEN; i+=2){
|
||||
// buffer->ptr_current[0] = block[i]; // TODO: use llcompose
|
||||
// buffer->ptr_current[1] = block[i+1];
|
||||
// buffer->ptr_current = cyclic_add(buffer->ptr_current, 2, buffer->ptr_start, buffer->buffer_len);
|
||||
// }
|
||||
//}
|
||||
|
||||
//Nicht verwendet
|
||||
/* int sig_calc_biquad(SingleSignalPath *signal, int x) {
|
||||
if (signal->preemph_activated == 0) {
|
||||
return x;
|
||||
}
|
||||
accum_t sum =
|
||||
fract_mult(x, signal->b_preemph[0]) + fract_mult(signal->_xd[0], signal->b_preemph[1]) +
|
||||
fract_mult(signal->_xd[1], signal->b_preemph[2]) + fract_mult(signal->_yd[0], signal->b_preemph[3]) +
|
||||
fract_mult(signal->_yd[1],signal->b_preemph[4]);
|
||||
int y = rnd_saturate(sum << 1);
|
||||
|
||||
|
||||
signal->_xd[1] = signal->_xd[0];
|
||||
signal->_xd[0] = x;
|
||||
signal->_yd[1] = signal->_yd[0];
|
||||
signal->_yd[0] = y;
|
||||
return y;
|
||||
} */
|
||||
|
||||
//Nicht verwendet
|
||||
/* int inline sig_get_delayed_sample(SingleSignalPath *signal) {
|
||||
return *signal->delay_buffer.ptr_current;
|
||||
} */
|
||||
|
||||
//Nicht verwendet
|
||||
/* int sig_delay_buffer_load_and_get(SingleSignalPath *signal, int x) {
|
||||
if (signal->delay_buffer.buffer_len == 0) {
|
||||
return x;
|
||||
}
|
||||
int out = *signal->delay_buffer.ptr_current;
|
||||
*signal->delay_buffer.ptr_current = x;
|
||||
increment_buffer(&signal->delay_buffer, 1);
|
||||
return out;
|
||||
} */
|
||||
|
||||
//Nicht verwendet
|
||||
/* int sig_calc_weight(SingleSignalPath *signal, int x) {
|
||||
if (signal->weight_actived == 0) {
|
||||
return x;
|
||||
}
|
||||
accum_t acc = fract_mult(x, signal->weight);
|
||||
return rnd_saturate(acc);
|
||||
} */
|
||||
|
||||
//Allgemeinen Buffer initialisieren
|
||||
int initialize_buffer(BufferPtr *buffer, int *buffer_start_add, int length, int max_buffer_len) {
|
||||
buffer->buffer_len = length;
|
||||
@@ -104,40 +166,20 @@ int initialize_buffer_dmb(BufferPtrDMB chess_storage(DMB) *buffer, int chess_sto
|
||||
}
|
||||
}
|
||||
|
||||
//Allgemeinen Buffer um bestimmten Eingabewert inkrementieren - nicht in Verwendung
|
||||
void increment_buffer(BufferPtr *buffer, int i_incr){
|
||||
buffer->ptr_current = cyclic_add(buffer->ptr_current, i_incr, buffer->ptr_start, buffer->buffer_len);
|
||||
}
|
||||
|
||||
//DMB-Buffer um bestimmten Eingabewert inkrementieren - nicht in Verwendung
|
||||
void increment_buffert_DMB(BufferPtrDMB *buffer, int i_incr){
|
||||
buffer->ptr_current = cyclic_add(buffer->ptr_current, i_incr, buffer->ptr_start, buffer->buffer_len);
|
||||
}
|
||||
//Übergabesample in allgemeinen Buffer schreiben und Buffer inkrementieren - nicht in Verwendung
|
||||
void write_buffer(BufferPtr *buffer, int sample){
|
||||
*buffer->ptr_current = sample;
|
||||
buffer->ptr_current = cyclic_add(buffer->ptr_current, 1, buffer->ptr_start, buffer->buffer_len);
|
||||
}
|
||||
|
||||
//Übergabesample in DMB Buffer schreiben (Delay-Line) und Buffer inkrementieren
|
||||
//Übergabesample in DMB Buffer schreiben (Sample-Line) und Buffer inkrementieren
|
||||
void write_buffer_dmb(BufferPtrDMB chess_storage(DMB) *buffer, int sample){
|
||||
*buffer->ptr_current = sample; //Sample des Acc-Sensors wird in Adresse geschrieben, auf die der Pointer zeigt
|
||||
buffer->ptr_current = cyclic_add(buffer->ptr_current, 1, buffer->ptr_start, buffer->buffer_len); //Pointer wird inkrementiert
|
||||
}
|
||||
|
||||
void static inline write_buffer_block(BufferPtr *buffer, int* block){
|
||||
// increment pointer to oldest block
|
||||
//buffer->ptr_current = cyclic_add(buffer->ptr_current, BLOCK_LEN, buffer->ptr_start, buffer->buffer_len);
|
||||
// load the next block
|
||||
for (int i=0; i<BLOCK_LEN; i+=2){
|
||||
buffer->ptr_current[0] = block[i]; // TODO: use llcompose
|
||||
buffer->ptr_current[1] = block[i+1];
|
||||
buffer->ptr_current = cyclic_add(buffer->ptr_current, 2, buffer->ptr_start, buffer->buffer_len);
|
||||
}
|
||||
}
|
||||
|
||||
//Initialisierungsfunktion für Biquad Filter Koeffizienten
|
||||
void sig_init_preemph_coef(SingleSignalPath *signal, double b0, double b1, double b2, double a1, double a2, int scale_bits) {
|
||||
void scale_preemph_filter(SingleSignalPath *signal, double b0, double b1, double b2, double a1, double a2, int scale_bits) {
|
||||
// Wenn b0=1 und Rest 0 -> kein Filter weil effektiv 1*Xn
|
||||
if (b0 == 1. && b1 == 0. && b2 == 0. && a1 == 0. && a2 == 0.) {
|
||||
signal->preemph_activated = 0;
|
||||
@@ -155,13 +197,13 @@ void sig_init_preemph_coef(SingleSignalPath *signal, double b0, double b1, doubl
|
||||
}
|
||||
}
|
||||
|
||||
/*Initialization functions - make sure all of them were called to ensure functionality*/
|
||||
int sig_init_delay(SingleSignalPath *signal, int n_delay) {
|
||||
//Initialisierungsfunktion für Delay
|
||||
int set_delay(SingleSignalPath *signal, int n_delay) {
|
||||
return initialize_buffer(&signal->delay_buffer, signal->_delay_buffer, n_delay, MAX_DELAY_SAMPS);
|
||||
}
|
||||
|
||||
//Initialisierungsfunktion für Gewichtung
|
||||
void sig_init_weight(SingleSignalPath *signal, double weight, int scale_nbits) {
|
||||
void set_weight(SingleSignalPath *signal, double weight, int scale_nbits) {
|
||||
// Wenn Gewichtung 1 -> kein Effekt
|
||||
if (weight == 1.) {
|
||||
signal->weight_actived = 0;
|
||||
@@ -175,57 +217,15 @@ void sig_init_weight(SingleSignalPath *signal, double weight, int scale_nbits) {
|
||||
}
|
||||
}
|
||||
|
||||
/*Calculator functions for the given signal path*/
|
||||
/*Calculate one biquad filter element*/
|
||||
int sig_calc_biquad(SingleSignalPath *signal, int x) {
|
||||
if (signal->preemph_activated == 0) {
|
||||
return x;
|
||||
}
|
||||
accum_t sum =
|
||||
fract_mult(x, signal->b_preemph[0]) + fract_mult(signal->_xd[0], signal->b_preemph[1]) +
|
||||
fract_mult(signal->_xd[1], signal->b_preemph[2]) + fract_mult(signal->_yd[0], signal->b_preemph[3]) +
|
||||
fract_mult(signal->_yd[1],signal->b_preemph[4]);
|
||||
int y = rnd_saturate(sum << 1);
|
||||
|
||||
|
||||
signal->_xd[1] = signal->_xd[0];
|
||||
signal->_xd[0] = x;
|
||||
signal->_yd[1] = signal->_yd[0];
|
||||
signal->_yd[0] = y;
|
||||
return y;
|
||||
}
|
||||
int inline sig_get_delayed_sample(SingleSignalPath *signal) {
|
||||
return *signal->delay_buffer.ptr_current;
|
||||
}
|
||||
|
||||
int sig_delay_buffer_load_and_get(SingleSignalPath *signal, int x) {
|
||||
if (signal->delay_buffer.buffer_len == 0) {
|
||||
return x;
|
||||
}
|
||||
int out = *signal->delay_buffer.ptr_current;
|
||||
*signal->delay_buffer.ptr_current = x;
|
||||
increment_buffer(&signal->delay_buffer, 1);
|
||||
return out;
|
||||
}
|
||||
|
||||
int sig_calc_weight(SingleSignalPath *signal, int x) {
|
||||
if (signal->weight_actived == 0) {
|
||||
return x;
|
||||
}
|
||||
accum_t acc = fract_mult(x, signal->weight);
|
||||
|
||||
return rnd_saturate(acc);
|
||||
}
|
||||
|
||||
int inline apply_fir_filter(BufferPtrDMB chess_storage(DMB) *pointer_delay_line, BufferPtr *pointer_filter_coefficients){
|
||||
int inline apply_fir_filter(BufferPtrDMB chess_storage(DMB) *pointer_sample_line, BufferPtr *pointer_coefficient_line){
|
||||
// Filterkoeffizienten mit Acc-Sensor Samples multiplizieren und aufsummieren um Akkumulator Output des adaptiven Filters zu erhalten
|
||||
|
||||
//Pointer für Koeffizienten und Delay Line Samples anlegen
|
||||
int chess_storage(DMB) *p_x0 = pointer_delay_line->ptr_current;
|
||||
int chess_storage(DMB) *p_xstart = pointer_delay_line->ptr_start;
|
||||
int *p_w = pointer_filter_coefficients->ptr_current;
|
||||
int delay_line_len = pointer_delay_line->buffer_len;
|
||||
int n_coeff = pointer_filter_coefficients->buffer_len;
|
||||
//Pointer für Koeffizienten und Sample-Line Samples anlegen
|
||||
int chess_storage(DMB) *p_x0 = pointer_sample_line->ptr_current;
|
||||
int chess_storage(DMB) *p_xstart = pointer_sample_line->ptr_start;
|
||||
int *p_w = pointer_coefficient_line->ptr_current;
|
||||
int sample_line_len = pointer_sample_line->buffer_len;
|
||||
int n_coeff = pointer_coefficient_line->buffer_len;
|
||||
|
||||
//Variablen und Akkumulatoren (72-Bit) anlegen
|
||||
int x0, x1, w0, w1;
|
||||
@@ -235,15 +235,15 @@ int inline apply_fir_filter(BufferPtrDMB chess_storage(DMB) *pointer_delay_line,
|
||||
|
||||
// In 2er Schritten durch die Koeffizienten iterieren, immer 2 Samples und 2 Koeffizienten pro Schleifendurchlauf -> DUAL LOAD und DUAL MAC
|
||||
for (int i=0; i < n_coeff; i+=2) chess_loop_range(1,){
|
||||
x0 = *p_x0; //Sample 1 aus Delay Line
|
||||
x0 = *p_x0; //Sample 1 aus Sample-Line
|
||||
w0 = *p_w; //Koeffizient 1 aus Koeffizienten Array
|
||||
p_w++; //Koeffizienten-Pointer inkrementieren
|
||||
p_x0 = cyclic_add(p_x0, -1, p_xstart, delay_line_len); //Delay-Line-Pointer dekrementieren (rueckwaerts durch Delay Line)
|
||||
p_x0 = cyclic_add(p_x0, -1, p_xstart, sample_line_len); //Sample-Line-Pointer dekrementieren (rueckwaerts durch Delay Line)
|
||||
|
||||
x1 = *p_x0; //Sample 2 aus Delay Line
|
||||
x1 = *p_x0; //Sample 2 aus Sample-Line
|
||||
w1 = *p_w; //Koeffizient 2 aus Koeffizienten Array
|
||||
p_w++; //Koeffizienten-Pointer inkrementieren
|
||||
p_x0 = cyclic_add(p_x0, -1, p_xstart, delay_line_len); //Delay-Line-Pointer dekrementieren (rueckwaerts durch Delay Line)
|
||||
p_x0 = cyclic_add(p_x0, -1, p_xstart, sample_line_len); //Sample-Line-Pointer dekrementieren (rueckwaerts durch Sample-Line)
|
||||
|
||||
acc_fir_1+=fract_mult(x0, w0); //Akkumulator 1 mit Sample 1 * Koeffizient 1 addieren
|
||||
acc_fir_2+=fract_mult(x1, w1); //Akkumulator 2 mit Sample 2 * Koeffizient 2 addieren
|
||||
@@ -253,20 +253,20 @@ int inline apply_fir_filter(BufferPtrDMB chess_storage(DMB) *pointer_delay_line,
|
||||
return rnd_saturate(acc_fir);
|
||||
}
|
||||
|
||||
void static inline update_filter_coefficients(BufferPtrDMB chess_storage(DMB) *pointer_delay_line, BufferPtr *pointer_filter_coefficients, int output){
|
||||
void static inline update_filter_coefficients(BufferPtrDMB chess_storage(DMB) *pointer_sample_line, BufferPtr *pointer_coefficient_line, int output){
|
||||
|
||||
int chess_storage(DMA) *p_w0 = pointer_filter_coefficients->ptr_start; //Pointer auf Filterkoeffizienten-Array
|
||||
int chess_storage(DMB) *p_x0 = pointer_delay_line->ptr_current; //Current-Pointer 1 auf Delay-Line Array
|
||||
int chess_storage(DMB) *p_x1 = pointer_delay_line->ptr_current; //Current-Pointer 2 auf Delay-Line Array
|
||||
int chess_storage(DMB) *p_xstart = pointer_delay_line->ptr_start; //Start-Pointer auf Delay-Line Array
|
||||
int chess_storage(DMA) *p_w0 = pointer_coefficient_line->ptr_start; //Pointer auf Filterkoeffizienten-Array
|
||||
int chess_storage(DMB) *p_x0 = pointer_sample_line->ptr_current; //Current-Pointer 1 auf Sample-Line Array
|
||||
int chess_storage(DMB) *p_x1 = pointer_sample_line->ptr_current; //Current-Pointer 2 auf Sample-Line Array
|
||||
int chess_storage(DMB) *p_xstart = pointer_sample_line->ptr_start; //Start-Pointer auf Sample-Line Array
|
||||
|
||||
int delay_line_len = pointer_delay_line->buffer_len; // Länge des Delay-Line Arrays
|
||||
int n_coeff = pointer_filter_coefficients->buffer_len; // Anzahl der Filterkoeffizienten
|
||||
int sample_line_len = pointer_sample_line->buffer_len; // Länge des Sample-Line Arrays
|
||||
int n_coeff = pointer_coefficient_line->buffer_len; // Anzahl der Filterkoeffizienten
|
||||
int correction, x0, x1, w0, w1;
|
||||
|
||||
accum_t acc_w0, acc_w1, product;
|
||||
|
||||
p_x1 = cyclic_add(p_x1, -1, pointer_delay_line->ptr_start, pointer_delay_line->buffer_len); //Current-Pointer 2 dekrementieren um 1
|
||||
p_x1 = cyclic_add(p_x1, -1, pointer_sample_line->ptr_start, pointer_sample_line->buffer_len); //Current-Pointer 2 dekrementieren um 1
|
||||
product = fract_mult(mu, output); //FIR-Output mit mu multiplizieren -> Korrektursignal. aktuell noch im accum-Format
|
||||
correction = rnd_saturate(product); //Korrektursignal wieder ins 32-Bit Format
|
||||
|
||||
@@ -279,16 +279,16 @@ void static inline update_filter_coefficients(BufferPtrDMB chess_storage(DMB) *p
|
||||
// Filterkoeffizienten mit Korrekturterm*Acc-Sensor-Sample updaten - 1 Cycle
|
||||
acc_w0 += fract_mult(correction, *p_x0);
|
||||
acc_w1 += fract_mult(correction, *p_x1);
|
||||
//Beide Pointer in der Delay-Line um 2 dekrementieren
|
||||
p_x0 = cyclic_add(p_x0, -2, p_xstart, delay_line_len);
|
||||
p_x1 = cyclic_add(p_x1, -2, p_xstart, delay_line_len);
|
||||
//Beide Pointer in der Sample-Line um 2 dekrementieren
|
||||
p_x0 = cyclic_add(p_x0, -2, p_xstart, sample_line_len);
|
||||
p_x1 = cyclic_add(p_x1, -2, p_xstart, sample_line_len);
|
||||
// Filterkoeffizienten in 64-Bit Wort schreiben - wird dann in mit einem Store-Vorgang an Ort wo p_w0 hinzeigt abgelegt - 1 Cycle
|
||||
*((long long *)p_w0) = llcompose(rnd_saturate(acc_w0), rnd_saturate(acc_w1));//LOAD/STORE-Hazard - +1 NOP benötigt - 1 Cycle
|
||||
p_w0+=2; //Koeffizienten-Pointer um 2 inkrementieren
|
||||
}
|
||||
}
|
||||
|
||||
void init(
|
||||
void initialize_signal(
|
||||
SingleSignalPath *c_sensor_signal_t,
|
||||
SingleSignalPath *acc_sensor_signal_t,
|
||||
double *b_c,
|
||||
@@ -303,32 +303,32 @@ void init(
|
||||
int scale_bits=31;
|
||||
|
||||
// C-Sensor Initialisierung: Biquad, Delay, Weight skalieren und in Struct schreiben
|
||||
sig_init_preemph_coef(c_sensor_signal_t, b_c[0], b_c[1], b_c[2], b_c[3], b_c[4], scale_bits);
|
||||
sig_init_delay(c_sensor_signal_t, delay_c);
|
||||
sig_init_weight(c_sensor_signal_t, weight_c, scale_bits);
|
||||
scale_preemph_filter(c_sensor_signal_t, b_c[0], b_c[1], b_c[2], b_c[3], b_c[4], scale_bits);
|
||||
set_delay(c_sensor_signal_t, delay_c);
|
||||
set_weight(c_sensor_signal_t, weight_c, scale_bits);
|
||||
|
||||
// Acc-Sensor Initialisierung: Biquad, Delay, Weight skalieren und in Struct schreiben
|
||||
sig_init_preemph_coef(acc_sensor_signal_t, b_acc[0], b_acc[1], b_acc[2], b_acc[3], b_acc[4], scale_bits);
|
||||
sig_init_delay(acc_sensor_signal_t, delay_acc);
|
||||
sig_init_weight(acc_sensor_signal_t, weight_acc, 31);
|
||||
scale_preemph_filter(acc_sensor_signal_t, b_acc[0], b_acc[1], b_acc[2], b_acc[3], b_acc[4], scale_bits);
|
||||
set_delay(acc_sensor_signal_t, delay_acc);
|
||||
set_weight(acc_sensor_signal_t, weight_acc, 31);
|
||||
|
||||
//Mu Skalierung und in globale Variable schreiben
|
||||
int scale = pow(2, scale_bits) - 1;
|
||||
mu = lms_mu * scale;
|
||||
// Buffer Initialisierung (Delay Line und Koeffizienten)
|
||||
initialize_buffer_dmb(&pointer_delay_line, delay_line, number_coefficients, MAX_FIR_COEFFS);
|
||||
initialize_buffer(&pointer_filter_coefficients, filter_coefficients, number_coefficients, MAX_FIR_COEFFS);
|
||||
initialize_buffer_dmb(&pointer_sample_line, sample_line, number_coefficients, MAX_FIR_COEFFS);
|
||||
initialize_buffer(&pointer_coefficient_line, coefficient_line, number_coefficients, MAX_FIR_COEFFS);
|
||||
|
||||
// Einträge in Delay Line und Koeffizienten-Array auf 0 setzen
|
||||
for (int i = 0; i < number_coefficients; i++) {
|
||||
pointer_delay_line.ptr_start[i] = 0;
|
||||
pointer_filter_coefficients.ptr_start[i] = 0;
|
||||
pointer_sample_line.ptr_start[i] = 0;
|
||||
pointer_coefficient_line.ptr_start[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// C-Sensor (d) = Corrupted Signal (Desired Signal + Corruption Noise Signal)
|
||||
// Acc-Sensor (x) = Reference Noise Signal
|
||||
void calc(
|
||||
void calculate_output(
|
||||
SingleSignalPath *c_sensor_signal_t,
|
||||
SingleSignalPath *acc_sensor_signal_t,
|
||||
int16_t volatile chess_storage(DMB) *c_sensor_input, //Pointer auf Input-Port im Shared Memory
|
||||
@@ -364,14 +364,14 @@ void calc(
|
||||
// Adaptiven Filter auf C-Sensor Signal anwenden
|
||||
|
||||
//Aktuelles Sample des Acc-Sensors wird in aktuelle Speicheradresse des Pointers der Delay Line geschrieben, dann wird der Pointer inkrementiert -> Delay Line hat Länge der Filterkoeffizienten
|
||||
write_buffer_dmb(&pointer_delay_line, acc_sensor_pre[0]);
|
||||
write_buffer_dmb(&pointer_sample_line, acc_sensor_pre[0]);
|
||||
// Filter auf Acc-Sensor Signal anwenden und Korrektursignal berechnen
|
||||
// Sample des Acc-Sensors in der Delay-Line werden mit den Filterkoeffizienten multipliziert und aufsummiert -> Akkumulator Output des adaptiven Filters
|
||||
filter_accumulator[0] = apply_fir_filter(&pointer_delay_line, &pointer_filter_coefficients);
|
||||
// Sample des Acc-Sensors in der Sample-Line werden mit den Filterkoeffizienten multipliziert und aufsummiert -> Akkumulator Output des adaptiven Filters
|
||||
filter_accumulator[0] = apply_fir_filter(&pointer_sample_line, &pointer_coefficient_line);
|
||||
// Output-Signal berechnen -> C-Sensor Sample - Akkumulator Output des adaptiven Filters
|
||||
output_32[0] = c_sensor_pre[0] - filter_accumulator[0];
|
||||
// Filterkoeffizienten adaptieren
|
||||
update_filter_coefficients(&pointer_delay_line, &pointer_filter_coefficients, output_32[0]);
|
||||
update_filter_coefficients(&pointer_sample_line, &pointer_coefficient_line, output_32[0]);
|
||||
// Bitshift zurück auf 16-Bit und in Ausgangsarray schreiben
|
||||
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_flatten_loop
|
||||
{
|
||||
|
||||
Reference in New Issue
Block a user