Code gekürzt - kompilliert
This commit is contained in:
102
main.c
102
main.c
@@ -1,10 +1,11 @@
|
|||||||
|
// BLOCK LEN 1 und MAX_FIR_COEFFS 64 werden vom Compiler mitgegeben
|
||||||
|
|
||||||
//#define SIMULATE
|
//#define SIMULATE
|
||||||
|
|
||||||
#ifdef SIMULATE
|
#ifdef SIMULATE
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define BLOCK_LEN 1 // define block length for processing - currently only 1 is supported
|
|
||||||
|
|
||||||
#include <stdint.h>
|
#include <stdint.h>
|
||||||
#include "signalProcessing/include/signal_path.h"
|
#include "signalProcessing/include/signal_path.h"
|
||||||
|
|
||||||
@@ -15,48 +16,32 @@
|
|||||||
|
|
||||||
// Shared Memory von ARM und DSP definieren
|
// Shared Memory von ARM und DSP definieren
|
||||||
#define INPUT_PORT0_ADD 0x800000 // Feste Adressen für Eingangsdaten im Shared Memory
|
#define INPUT_PORT0_ADD 0x800000 // Feste Adressen für Eingangsdaten im Shared Memory
|
||||||
//#define INPUT_PORT1_ADD INPUT_PORT0_ADD + 2 //DMB - warum auskommentiert?
|
#define OUTPUT_PORT_ADD (INPUT_PORT0_ADD + 16) // Feste Adressen für Ausgangsdatensdaten im Shared Memory, 16 Byte von Eingangsadresse Weg
|
||||||
#define OUTPUT_PORT_ADD (INPUT_PORT0_ADD + 16) // Feste Adressen für Ausgangsdatensdaten im Shared Memory, 16 Byte von Eingangsadresse Weg (PS: 2* for 2 channels)
|
|
||||||
|
|
||||||
//Chess Compiler spezifisch: Interrupt-Register festlegen um ARM zu kontaktieren nach fertiger Berechnung (PS: Define the interrupt register to notify the ARM of a completed operation)
|
//Chess Compiler spezifisch: Interrupt-Register festlegen um ARM zu kontaktieren nach fertiger Berechnung
|
||||||
volatile static unsigned char chess_storage(DMIO:CSS_CMD) CssCmdGen;
|
volatile static unsigned char chess_storage(DMIO:CSS_CMD) css_cmd_flag;
|
||||||
|
|
||||||
// Interrupt-Flag, welche von ARM gesetzt wird, wenn eine Berechnung gewünscht ist
|
// Interrupt-Flag, welche von ARM gesetzt wird, wenn eine Berechnung gewünscht ist
|
||||||
static volatile int actionRequired;
|
static volatile int action_required;
|
||||||
|
|
||||||
// Structs anlegen für die Signalpfade - hier werden Konfigurationen abgelegt(signal_path.h)
|
// Structs anlegen für die Signalpfade - hier werden Konfigurationen abgelegt(signal_path.h)
|
||||||
static SingleSignalPath cSensorSignal;
|
static SingleSignalPath corrupted_signal;
|
||||||
static SingleSignalPath accSensorSignal;
|
static SingleSignalPath reference_noise_signal;
|
||||||
|
|
||||||
// Umschaltung zwischen sampleweiser und blockweiser Verarbeitung
|
static volatile int16_t chess_storage(DMB:INPUT_PORT0_ADD) input_port[4]; //Array mit 4x16 Bit Einträgen auf 2x32 Bit Registern - nur die ersten 2 werden genutzt
|
||||||
// Sampleweise Verarbeitung: Adresse aus Shared Memory wird direkt verwendet
|
static volatile int16_t chess_storage(DMB:OUTPUT_PORT_ADD) output_port[4]; //Array mit 4x16 Bit Einträgen auf 2x32 Bit Registern - alle werden genutzt
|
||||||
// Blockweise Verarbeitung: Blöcke kopiert und verarbeitet? Offensichtlicch nicht genutzt bisher
|
static volatile int16_t chess_storage(DMB) *input_pointer_0;
|
||||||
#if BLOCK_LEN == 1
|
static volatile int16_t chess_storage(DMB) *input_pointer_1;
|
||||||
static volatile int16_t chess_storage(DMB:INPUT_PORT0_ADD) intputPort[4]; //TODO: if BLOCK_LEN >1 is used, the data is interleaved: ch0ch1, ch0ch1 .... chess_storage(DMA % alignof(int)) ?
|
static volatile int16_t chess_storage(DMB) *output_pointer;
|
||||||
//static volatile int16_t chess_storage(DMB:INPUT_PORT1_ADD) intputPort1[BLOCK_LEN];
|
static volatile int16_t chess_storage(DMB) *sample_pointer;
|
||||||
static volatile int16_t chess_storage(DMB:OUTPUT_PORT_ADD) outputPort[4];
|
static volatile int16_t chess_storage(DMB) sample; //Speicherplatz für Ergebnis der calc()-Funktion
|
||||||
static volatile int16_t chess_storage(DMB) *inPtr0;
|
|
||||||
static volatile int16_t chess_storage(DMB) *inPtr1;
|
|
||||||
static volatile int16_t chess_storage(DMB) *outPtr;
|
|
||||||
static volatile int16_t chess_storage(DMB) sample;
|
|
||||||
static volatile int16_t chess_storage(DMB) *sample_ptr;
|
|
||||||
#else
|
|
||||||
// Int-Array für Blockverarbeitung im Shared Memory DMA anlegen (Eingabe)
|
|
||||||
static int16_t chess_storage(DMA) intputPort[BLOCK_LEN]; //chess_storage(DMA:INPUT_PORT_ADD) TODO: volatile? chess_storage(DMA % alignof(int))
|
|
||||||
//static int16_t chess_storage(DMA) intputPort1[BLOCK_LEN]; //chess_storage(DMA:INPUT_PORT_ADD)
|
|
||||||
// Int-Array für Blockverarbeitung im Shared Memory DMA anlegen (Ausgabe)
|
|
||||||
static int16_t chess_storage(DMB) outputPort[BLOCK_LEN]; // chess_storage(DMB:OUTPUT_PORT_ADD) TODO: determine output port add
|
|
||||||
#endif
|
|
||||||
|
|
||||||
//void isr0() ist eine Interrupt Service Routine Funktion, welche als C Funktion deklariert wird
|
//void isr0() ist eine Interrupt Service Routine Funktion, welche als C Funktion deklariert wird
|
||||||
// property (isr) ist Chess Compiler spezifisch und kennzeichnet eine Funktion als Interrupt Service Routine
|
// property (isr) ist Chess Compiler spezifisch und kennzeichnet eine Funktion als Interrupt Service Routine
|
||||||
//wird Interrupt getriggert, wird actionRequired auf 1 gesetzt - etwas muss dannpassieren
|
//wird Interrupt getriggert, wird action_required auf 1 gesetzt - etwas muss dannpassieren
|
||||||
extern "C" void isr0() property (isr) {
|
extern "C" void isr0() property (isr) {
|
||||||
actionRequired = 1;
|
action_required = 1;
|
||||||
}
|
}
|
||||||
#ifdef __chess__
|
|
||||||
extern "C"
|
|
||||||
#endif
|
|
||||||
|
|
||||||
int main(void) {
|
int main(void) {
|
||||||
// Enum, welcher den Ausgabemodus definiert - wird in calc()-Funktion verwendet
|
// Enum, welcher den Ausgabemodus definiert - wird in calc()-Funktion verwendet
|
||||||
@@ -65,11 +50,11 @@ int main(void) {
|
|||||||
// Alle 0 bis auf b[0] -> einfacher Gain auf 0,75
|
// Alle 0 bis auf b[0] -> einfacher Gain auf 0,75
|
||||||
double b0[5]={0.75, 0., 0., 0., 0.};
|
double b0[5]={0.75, 0., 0., 0., 0.};
|
||||||
double b1[5]={0.75, 0., 0., 0., 0.};
|
double b1[5]={0.75, 0., 0., 0., 0.};
|
||||||
int N_lms_fir_coeffs = MAX_FIR_COEFFS; // 64 Koeffizienten für ANR
|
int coefficients = MAX_FIR_COEFFS; // 64 Koeffizienten für ANR
|
||||||
|
|
||||||
// Signale initialisieren, oben angelegte Structs mit Parametern füllen
|
// Signale initialisieren, oben angelegte Structs mit Parametern füllen
|
||||||
init(
|
init(
|
||||||
&cSensorSignal, &accSensorSignal, //Signal-Structs
|
&corrupted_signal, &reference_noise_signal, //Signal-Structs
|
||||||
b0, // Biqquad Koeffizienten C-Sensor
|
b0, // Biqquad Koeffizienten C-Sensor
|
||||||
b1, // Biqquad Koeffizienten Acc-Sensor
|
b1, // Biqquad Koeffizienten Acc-Sensor
|
||||||
2, // Sample Delay C-Sensor
|
2, // Sample Delay C-Sensor
|
||||||
@@ -77,20 +62,9 @@ int main(void) {
|
|||||||
0.9, //Gewichtung C-Sensor
|
0.9, //Gewichtung C-Sensor
|
||||||
0.9, //Gewichtung Acc-Sensor
|
0.9, //Gewichtung Acc-Sensor
|
||||||
0.01, // Mu
|
0.01, // Mu
|
||||||
N_lms_fir_coeffs // Anzahl Filterkoeffizienten
|
coefficients // Anzahl Filterkoeffizienten
|
||||||
);
|
);
|
||||||
|
|
||||||
// Fixer Filter wenn nicht adaptiv
|
|
||||||
if (mode == OUTPUT_MODE_FIR){
|
|
||||||
for (int i=0; i<N_lms_fir_coeffs; i++){
|
|
||||||
#ifdef LPDSP16
|
|
||||||
ptr_fir_lms_coeffs.ptr_start[i] = ((pow(2, 15)-1) /N_lms_fir_coeffs);
|
|
||||||
#else
|
|
||||||
ptr_fir_lms_coeffs.ptr_start[i] = ((pow(2, 31)-1) /N_lms_fir_coeffs);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
//Simulationsmodus mit File I/O
|
//Simulationsmodus mit File I/O
|
||||||
#ifdef SIMULATE
|
#ifdef SIMULATE
|
||||||
FILE *fp1 = fopen("./test/testdata/input/chirp_disturber.txt", "r");
|
FILE *fp1 = fopen("./test/testdata/input/chirp_disturber.txt", "r");
|
||||||
@@ -103,19 +77,13 @@ int main(void) {
|
|||||||
for (int i=0; i<BLOCK_LEN; i++){
|
for (int i=0; i<BLOCK_LEN; i++){
|
||||||
fscanf(fp1, "%d", &d0); //load blocks
|
fscanf(fp1, "%d", &d0); //load blocks
|
||||||
fscanf(fp2, "%d", &d1);
|
fscanf(fp2, "%d", &d1);
|
||||||
intputPort[i] = (int16_t) d0;
|
input_port[i] = (int16_t) d0;
|
||||||
intputPort[i+1] = (int16_t) d1;
|
input_port[i+1] = (int16_t) d1;
|
||||||
}
|
}
|
||||||
calc(
|
calc(
|
||||||
&cSensorSignal, &accSensorSignal,
|
&corrupted_signal, &reference_noise_signal, mode, &input_port[0], &input_port[1], output_port);
|
||||||
//&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs,
|
|
||||||
mode,
|
|
||||||
&intputPort[0],
|
|
||||||
&intputPort[1],
|
|
||||||
outputPort
|
|
||||||
);
|
|
||||||
for (int i=0; i<BLOCK_LEN; i++){
|
for (int i=0; i<BLOCK_LEN; i++){
|
||||||
fprintf(fp3, "%d\n", outputPort[i]);
|
fprintf(fp3, "%d\n", output_port[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
fclose(fp1);
|
fclose(fp1);
|
||||||
@@ -125,20 +93,20 @@ int main(void) {
|
|||||||
// Hardwaremodus mit Interrupts
|
// Hardwaremodus mit Interrupts
|
||||||
#else
|
#else
|
||||||
enable_interrupts(); //Interrupts aktivieren
|
enable_interrupts(); //Interrupts aktivieren
|
||||||
outPtr = &outputPort[1]; // Zweite Hälfte des Ausgangspuffers zuerst füllen - warum 1 statt 2?
|
output_pointer = &output_port[1]; // Zweite Hälfte des Ausgangspuffers zuerst füllen - warum 1 statt 2? Warum generell nicht 0?
|
||||||
sample_ptr = &sample;
|
sample_pointer = &sample; //Sample-Pointer wird auf Adresse des Sample-Speicherplatzes gesetzt
|
||||||
|
|
||||||
//Endlosschleife für Interrupt-gesteuerte Verarbeitung
|
//Endlosschleife für Interrupt-gesteuerte Verarbeitung
|
||||||
actionRequired = 0;
|
action_required = 0;
|
||||||
while (1){
|
while (1){
|
||||||
CssCmdGen = CSS_CMD_1; // Interrupt Bit setzen um ARM zu signalisieren, dass der DSP abschaltet
|
css_cmd_flag = CSS_CMD_1; // Interrupt Bit setzen um ARM zu signalisieren, dass der DSP schläft
|
||||||
core_halt();
|
core_halt();
|
||||||
if (actionRequired == 1) {
|
if (action_required == 1) {
|
||||||
CssCmdGen = CSS_CMD_0; // Interrupt Bit setzen um ARM zu signalisieren, dass der DSP arbeitet
|
css_cmd_flag = CSS_CMD_0; // Interrupt Bit setzen um ARM zu signalisieren, dass der DSP arbeitet
|
||||||
actionRequired = 0;
|
action_required = 0; // Action-Flag setzen, damit Loop nicht automatisch startet
|
||||||
outPtr = cyclic_add(outPtr, 2, outputPort, 4); //Pointer inkrementieren - was passiert hier genau?
|
output_pointer = cyclic_add(output_pointer, 2, output_port, 4); //Output Buffer um 2 Byte inkrementieren, hat insgesamt 4 Byte - Reset wenn Ende erreicht
|
||||||
*outPtr = *sample_ptr;
|
*output_pointer = *sample_pointer; //Inhalt des Sample-Pointer Ziels (Ergenis der vorherigen Berechnung) in Output-Pointer schreiben
|
||||||
calc(&cSensorSignal, &accSensorSignal, mode, &intputPort[1], &intputPort[0], sample_ptr);
|
calc(&corrupted_signal, &reference_noise_signal, mode, &input_port[1], &input_port[0], sample_pointer); //16 Bit Output Sample aus 2 16 Bit Input Samples berechnen
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|||||||
@@ -1,33 +1,17 @@
|
|||||||
#include "include/signal_path.h"
|
#include "include/signal_path.h"
|
||||||
|
#define BLOCK_LEN 1
|
||||||
|
|
||||||
/* Global variables decleration*/
|
/* Global variables decleration*/
|
||||||
static int counter=0;
|
static int counter=0;
|
||||||
static int mu;
|
static int mu;
|
||||||
|
|
||||||
#ifdef LPDSP16
|
|
||||||
//static int leak=24576; //0.75
|
|
||||||
//static int leak=29491; //0.9
|
|
||||||
//static int leak=31129; //0.95 // no effect
|
|
||||||
static int leak=32735; //0.999 // (1 ? µ?)
|
|
||||||
//static int leak=32766; //0.99999
|
|
||||||
#else
|
|
||||||
//static int leak=2145336164; //0.999 // (1 ? µ?)
|
|
||||||
static int leak=2147462173; //0.999 // (1 ? µ?)
|
static int leak=2147462173; //0.999 // (1 ? µ?)
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#if BLOCK_LEN == 1
|
|
||||||
int chess_storage(DMB) fir_lms_delay_line[MAX_FIR_COEFFS];
|
int chess_storage(DMB) fir_lms_delay_line[MAX_FIR_COEFFS];
|
||||||
BufferPtrDMB chess_storage(DMB) ptr_fir_lms_delay_line;
|
BufferPtrDMB chess_storage(DMB) ptr_fir_lms_delay_line;
|
||||||
BufferPtr ptr_fir_lms_coeffs;
|
BufferPtr ptr_fir_lms_coeffs;
|
||||||
|
|
||||||
#else
|
|
||||||
int chess_storage(DMA%(sizeof(long long))) fir_lms_delay_line[BLOCK_LEN + MAX_FIR_COEFFS]; // The delay line for the adaptive filter
|
|
||||||
BufferPtr ptr_fir_lms_delay_line;
|
|
||||||
BufferPtr ptr_fir_lms_coeffs;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
int chess_storage(DMA % (sizeof(long long))) fir_lms_coeffs[MAX_FIR_COEFFS]; // The coefficients for the adaptive filter
|
int chess_storage(DMA % (sizeof(long long))) fir_lms_coeffs[MAX_FIR_COEFFS]; // The coefficients for the adaptive filter
|
||||||
|
|
||||||
|
|
||||||
@@ -84,16 +68,6 @@ int chess_storage(DMA % (sizeof(long long))) fir_lms_coeffs[MAX_FIR_COEFFS]; //
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
/*Round saturate with 16 bits return value */
|
|
||||||
int static inline rnd_saturate16(accum_t acc){ //maybe int16_fast type?
|
|
||||||
acc = to_accum( // saturate
|
|
||||||
rnd_saturate(acc << 32)
|
|
||||||
);
|
|
||||||
return rnd_saturate(acc >> 16); //round
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
int sig_init_buffer(BufferPtr *buffer, int *buffer_start_add, int length, int max_buffer_len) {
|
int sig_init_buffer(BufferPtr *buffer, int *buffer_start_add, int length, int max_buffer_len) {
|
||||||
buffer->buffer_len = length;
|
buffer->buffer_len = length;
|
||||||
buffer->ptr_start = buffer_start_add;
|
buffer->ptr_start = buffer_start_add;
|
||||||
@@ -155,6 +129,7 @@ void static inline sig_circular_buffer_ptr_put_block(BufferPtr *buffer, int* blo
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Initialisierungsfunktion für Biquad Filter Koeffizienten
|
||||||
void sig_init_preemph_coef(SingleSignalPath *signal, double b0, double b1, double b2, double a1, double a2, int scale_bits) {
|
void sig_init_preemph_coef(SingleSignalPath *signal, double b0, double b1, double b2, double a1, double a2, int scale_bits) {
|
||||||
// Wenn b0=1 und Rest 0 -> kein Filter weil effektiv 1*Xn
|
// Wenn b0=1 und Rest 0 -> kein Filter weil effektiv 1*Xn
|
||||||
if (b0 == 1. && b1 == 0. && b2 == 0. && a1 == 0. && a2 == 0.) {
|
if (b0 == 1. && b1 == 0. && b2 == 0. && a1 == 0. && a2 == 0.) {
|
||||||
@@ -178,6 +153,7 @@ int sig_init_delay(SingleSignalPath *signal, int n_delay) {
|
|||||||
return sig_init_buffer(&signal->delay_buffer, signal->_delay_buffer, n_delay, MAX_DELAY_SAMPS);
|
return sig_init_buffer(&signal->delay_buffer, signal->_delay_buffer, n_delay, MAX_DELAY_SAMPS);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Initialisierungsfunktion für Gewichtung
|
||||||
void sig_init_weight(SingleSignalPath *signal, double weight, int scale_nbits) {
|
void sig_init_weight(SingleSignalPath *signal, double weight, int scale_nbits) {
|
||||||
// Wenn Gewichtung 1 -> kein Effekt
|
// Wenn Gewichtung 1 -> kein Effekt
|
||||||
if (weight == 1.) {
|
if (weight == 1.) {
|
||||||
@@ -202,12 +178,8 @@ int sig_calc_biquad(SingleSignalPath *signal, int x) {
|
|||||||
fract_mult(x, signal->b_preemph[0]) + fract_mult(signal->_xd[0], signal->b_preemph[1]) +
|
fract_mult(x, signal->b_preemph[0]) + fract_mult(signal->_xd[0], signal->b_preemph[1]) +
|
||||||
fract_mult(signal->_xd[1], signal->b_preemph[2]) + fract_mult(signal->_yd[0], signal->b_preemph[3]) +
|
fract_mult(signal->_xd[1], signal->b_preemph[2]) + fract_mult(signal->_yd[0], signal->b_preemph[3]) +
|
||||||
fract_mult(signal->_yd[1],signal->b_preemph[4]);
|
fract_mult(signal->_yd[1],signal->b_preemph[4]);
|
||||||
|
|
||||||
#ifdef LPDSP16
|
|
||||||
int y = rnd_saturate16(sum << 1);
|
|
||||||
#else
|
|
||||||
int y = rnd_saturate(sum << 1);
|
int y = rnd_saturate(sum << 1);
|
||||||
#endif
|
|
||||||
|
|
||||||
signal->_xd[1] = signal->_xd[0];
|
signal->_xd[1] = signal->_xd[0];
|
||||||
signal->_xd[0] = x;
|
signal->_xd[0] = x;
|
||||||
@@ -238,161 +210,6 @@ int sig_calc_weight(SingleSignalPath *signal, int x) {
|
|||||||
return rnd_saturate(acc);
|
return rnd_saturate(acc);
|
||||||
}
|
}
|
||||||
|
|
||||||
#if BLOCK_LEN!=1 // Block processing
|
|
||||||
/*lpdsp32 fir filter example adapted from user guide
|
|
||||||
#define NS 256 //No. of samples
|
|
||||||
#define N 64 //No. of filter coefficients or No. of tap weights
|
|
||||||
int chess_storage(DMB) y[NS]; //Output Signal
|
|
||||||
int chess_storage(DMA %(sizeof(long long))) x[NS+N-1]; //Input Signal
|
|
||||||
//Filter coefficients or tap weights
|
|
||||||
int chess_storage(DMA %(sizeof(long long))) h[N];
|
|
||||||
*/
|
|
||||||
void sig_calc_fir_lpdsp32_block(BufferPtr *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int chess_storage(DMB) *out){
|
|
||||||
//void fir(int *y, int *x, int *h)
|
|
||||||
static int chess_storage(DMA) *p_x; // pointer to the start of the last added block
|
|
||||||
static int chess_storage(DMA) *p_h; // pointer to the start of the filter coefficients
|
|
||||||
static int chess_storage(DMB) *p_y; // pointer to the output port
|
|
||||||
|
|
||||||
p_y = out;
|
|
||||||
|
|
||||||
int *px_start = ptr_fir_lms_delay_line->ptr_start;
|
|
||||||
int *ph_start = ptr_fir_lms_coeffs->ptr_current;
|
|
||||||
int delay_line_len = ptr_fir_lms_delay_line->buffer_len;
|
|
||||||
int n_coeff = ptr_fir_lms_coeffs->buffer_len;
|
|
||||||
|
|
||||||
int coef1, coef2;
|
|
||||||
int dat1, dat2;
|
|
||||||
|
|
||||||
for(unsigned int n=0; n<BLOCK_LEN; n+=2) chess_loop_range(1,){
|
|
||||||
//p_x = x + n;
|
|
||||||
p_x = cyclic_add(px_start, n, px_start, delay_line_len);
|
|
||||||
p_h = ph_start;
|
|
||||||
|
|
||||||
#ifdef PLATFORM_GENERIC
|
|
||||||
lldecompose(*((long long *)p_h), &coef1, &coef2);
|
|
||||||
#else
|
|
||||||
lldecompose(*((long long *)p_h), coef1, coef2);
|
|
||||||
#endif
|
|
||||||
p_h+=2;
|
|
||||||
#ifdef PLATFORM_GENERIC
|
|
||||||
lldecompose(*((long long *)p_x), &dat2, &dat1);
|
|
||||||
#else
|
|
||||||
lldecompose(*((long long *)p_x), dat2, dat1);
|
|
||||||
#endif
|
|
||||||
p_x = cyclic_add(p_x, -2, px_start, delay_line_len);
|
|
||||||
|
|
||||||
accum_t sum1 = fract_mult(dat1, coef1);
|
|
||||||
accum_t sum2 = fract_mult(dat2, coef1);
|
|
||||||
sum1 += fract_mult(dat2 , coef2);
|
|
||||||
sum1 = to_accum(rnd_saturate(sum1));
|
|
||||||
for(int k=2; k < n_coeff; k+=2) chess_loop_range(1,){
|
|
||||||
#ifdef PLATFORM_GENERIC
|
|
||||||
lldecompose(*((long long *)p_x), &dat2, &dat1);
|
|
||||||
#else
|
|
||||||
lldecompose(*((long long *)p_x), dat2, dat1);
|
|
||||||
#endif
|
|
||||||
p_x = cyclic_add(p_x, -2, px_start, delay_line_len);
|
|
||||||
|
|
||||||
sum2 += fract_mult(dat1, coef2);
|
|
||||||
sum2 = to_accum(rnd_saturate(sum2));
|
|
||||||
|
|
||||||
#ifdef PLATFORM_GENERIC
|
|
||||||
lldecompose(*((long long *)p_h), &coef1, &coef2);
|
|
||||||
#else
|
|
||||||
lldecompose(*((long long *)p_h), coef1, coef2);
|
|
||||||
#endif
|
|
||||||
p_h+=2;
|
|
||||||
|
|
||||||
sum1 += fract_mult(dat1, coef1);
|
|
||||||
sum2 += fract_mult(dat2, coef1);
|
|
||||||
sum1 += fract_mult(dat2, coef2);
|
|
||||||
sum1 = to_accum(rnd_saturate(sum1));
|
|
||||||
}
|
|
||||||
#ifdef PLATFORM_GENERIC
|
|
||||||
lldecompose(*((long long *)p_x), &dat2, &dat1);
|
|
||||||
#else
|
|
||||||
lldecompose(*((long long *)p_x), dat2, dat1);
|
|
||||||
#endif
|
|
||||||
sum2 += fract_mult(dat1, coef2);
|
|
||||||
sum2 = to_accum(rnd_saturate(sum2));
|
|
||||||
|
|
||||||
*p_y++ = extract_high(sum2);
|
|
||||||
*p_y++ = extract_high(sum1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void sig_calc_fir_generic_block(BufferPtr *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int chess_storage(DMB) *out){
|
|
||||||
static int chess_storage(DMA) *p_x; // pointer to the start of the last added block
|
|
||||||
static int chess_storage(DMA) *p_h; // pointer to the start of the filter coefficients
|
|
||||||
static int chess_storage(DMB) *p_y; // pointer to the output port
|
|
||||||
|
|
||||||
static int coef1, coef2;
|
|
||||||
static int dat1, dat2;
|
|
||||||
|
|
||||||
p_x = ptr_fir_lms_delay_line->ptr_current;
|
|
||||||
p_h = ptr_fir_lms_coeffs->ptr_current;
|
|
||||||
p_y = out;
|
|
||||||
|
|
||||||
for(int n=0; n<BLOCK_LEN; n+=2)
|
|
||||||
{
|
|
||||||
p_x = cyclic_add(ptr_fir_lms_delay_line->ptr_current, n, ptr_fir_lms_delay_line->ptr_start, ptr_fir_lms_delay_line->buffer_len); // can be done in increments of two, assuming the buffer pointer increment is even
|
|
||||||
accum_t sum = to_accum(0);
|
|
||||||
for(int k=0; k < ptr_fir_lms_coeffs->buffer_len; k+=2) chess_loop_range(1,)
|
|
||||||
{
|
|
||||||
sum += fract_mult(p_x[0] , p_h[k]);
|
|
||||||
sum += fract_mult(p_x[1] , p_h[k+1]);
|
|
||||||
|
|
||||||
sum = to_accum(rnd_saturate(sum));
|
|
||||||
p_x = cyclic_add(p_x, -2, ptr_fir_lms_delay_line->ptr_start, ptr_fir_lms_delay_line->buffer_len); // can be done in increments of two, assuming the buffer pointer increment is even
|
|
||||||
}
|
|
||||||
*p_y++ = extract_high(sum);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
/* "out" is actually an input to the function and is the output of the fir_lms filter system*/
|
|
||||||
void adapt_coeffs_lpdsp32_block(BufferPtr *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int out){ // only works for even delay line sample pointers!!
|
|
||||||
|
|
||||||
int *p_x = ptr_fir_lms_delay_line->ptr_current; // pointer to the start of the last added block - TODO: doublecheck this - might be wrong because the pointer actually points to the end of the block!
|
|
||||||
int *p_x_start = ptr_fir_lms_delay_line->ptr_start;
|
|
||||||
int *p_h = ptr_fir_lms_coeffs->ptr_current; // pointer to the start of the filter coefficients
|
|
||||||
int delay_line_len = ptr_fir_lms_delay_line->buffer_len;
|
|
||||||
int n_coeff = ptr_fir_lms_coeffs->buffer_len;
|
|
||||||
int prod0, x0, x1, h0, h1;
|
|
||||||
|
|
||||||
// Calculate the first term of the coefficient adaption
|
|
||||||
accum_t acc_C = fract_mult(mu, out);
|
|
||||||
prod0 = rnd_saturate(acc_C);
|
|
||||||
//acc_D = fract_mult(mu, out1);
|
|
||||||
//prod1 = rnd_saturate(acc_C);
|
|
||||||
for (int i=0; i<n_coeff; i+=2) chess_loop_range(1, ){
|
|
||||||
// Calculate the coefficient wise adaption
|
|
||||||
|
|
||||||
// utilize dual load and dual pointer update
|
|
||||||
// load first sample and coefficient
|
|
||||||
#ifdef PLATFORM_GENERIC
|
|
||||||
lldecompose(*((long long *)p_h), &h0, &h1);
|
|
||||||
#else
|
|
||||||
lldecompose(*((long long *)p_h), h0, h1);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
accum_t acc_A = to_accum(h0);
|
|
||||||
accum_t acc_B = to_accum(h1);
|
|
||||||
|
|
||||||
#ifdef PLATFORM_GENERIC
|
|
||||||
lldecompose(*((long long *)p_x), &x0, &x1);
|
|
||||||
#else
|
|
||||||
lldecompose(*((long long *)p_x), x0, x1);
|
|
||||||
#endif
|
|
||||||
p_x = cyclic_add(p_x, -2, p_x_start, delay_line_len); // can be done in increments of two, assuming the buffer pointer increment is even
|
|
||||||
|
|
||||||
// initialize accumulators with old coefficients, calculate the adaptions and accumulate
|
|
||||||
acc_A += fract_mult(prod0, x0); // TODO: This can be further optimized by using all 4 available accums!
|
|
||||||
acc_B += fract_mult(prod0, x1);
|
|
||||||
// update the current filter coefficients - dual rnd_sat; dual store
|
|
||||||
*((long long *)p_h) = llcompose(rnd_saturate(acc_A), rnd_saturate(acc_B));// load/store hazard ! - 1nop
|
|
||||||
p_h+=2;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
|
|
||||||
int inline sig_calc_fir_lpdsp32_single(BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs){
|
int inline sig_calc_fir_lpdsp32_single(BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs){
|
||||||
|
|
||||||
// Calculate the fir filter output on x to get the canceller
|
// Calculate the fir filter output on x to get the canceller
|
||||||
@@ -436,11 +253,7 @@ int inline sig_calc_fir_lpdsp32_single(BufferPtrDMB chess_storage(DMB) *ptr_fir_
|
|||||||
// Calculate the output sample
|
// Calculate the output sample
|
||||||
acc1_C = acc1_A + acc1_B;
|
acc1_C = acc1_A + acc1_B;
|
||||||
//out32 = rnd_saturate(acc1_A);
|
//out32 = rnd_saturate(acc1_A);
|
||||||
#ifdef LPDSP16
|
|
||||||
return rnd_saturate16(acc1_C);
|
|
||||||
#else
|
|
||||||
return rnd_saturate(acc1_C);
|
return rnd_saturate(acc1_C);
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void static inline adapt_coeffs_lpdsp32_single_v1(BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int out){
|
void static inline adapt_coeffs_lpdsp32_single_v1(BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int out){
|
||||||
@@ -461,11 +274,8 @@ void static inline adapt_coeffs_lpdsp32_single_v1(BufferPtrDMB chess_storage(DMB
|
|||||||
|
|
||||||
// Calculate the first term of the coefficient adaption
|
// Calculate the first term of the coefficient adaption
|
||||||
accum_t acc_C = fract_mult(mu, out);
|
accum_t acc_C = fract_mult(mu, out);
|
||||||
#ifdef LPDSP16
|
|
||||||
prod = rnd_saturate16(acc_C);
|
|
||||||
#else
|
|
||||||
prod = rnd_saturate(acc_C);
|
prod = rnd_saturate(acc_C);
|
||||||
#endif
|
|
||||||
/* Abschätzung cycles per 2 coefficient:
|
/* Abschätzung cycles per 2 coefficient:
|
||||||
dual load coeffs: 1
|
dual load coeffs: 1
|
||||||
single load tab value: 2
|
single load tab value: 2
|
||||||
@@ -484,13 +294,8 @@ void static inline adapt_coeffs_lpdsp32_single_v1(BufferPtrDMB chess_storage(DMB
|
|||||||
acc_A = to_accum(h0);
|
acc_A = to_accum(h0);
|
||||||
acc_B = to_accum(h1);
|
acc_B = to_accum(h1);
|
||||||
|
|
||||||
#ifdef LPDSP16
|
|
||||||
acc_A += fract_mult(prod, *p_x0) << 16; // TODO: This could be further optimized by using all 4 available accums?
|
|
||||||
acc_B += fract_mult(prod, *p_x1) << 16;
|
|
||||||
#else
|
|
||||||
acc_A += fract_mult(prod, *p_x0); // TODO: This could be further optimized by using all 4 available accums?
|
acc_A += fract_mult(prod, *p_x0); // TODO: This could be further optimized by using all 4 available accums?
|
||||||
acc_B += fract_mult(prod, *p_x1);
|
acc_B += fract_mult(prod, *p_x1);
|
||||||
#endif
|
|
||||||
|
|
||||||
p_x0 = cyclic_add(p_x0, -2, px_start, delay_line_len);
|
p_x0 = cyclic_add(p_x0, -2, px_start, delay_line_len);
|
||||||
p_x1 = cyclic_add(p_x1, -2, px_start, delay_line_len);
|
p_x1 = cyclic_add(p_x1, -2, px_start, delay_line_len);
|
||||||
@@ -501,78 +306,6 @@ void static inline adapt_coeffs_lpdsp32_single_v1(BufferPtrDMB chess_storage(DMB
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void static inline adapt_coeffs_lpdsp32_single_leaky(BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int out){
|
|
||||||
|
|
||||||
int chess_storage(DMA) *p_h0 = ptr_fir_lms_coeffs->ptr_start; //coeff load pointer
|
|
||||||
//int chess_storage(DMA) *p_h1 = ptr_fir_lms_coeffs->ptr_start; //coeff store pointer
|
|
||||||
int chess_storage(DMB) *p_x0 = ptr_fir_lms_delay_line->ptr_current; // chess_storage(DMB)
|
|
||||||
int chess_storage(DMB) *p_x1 = ptr_fir_lms_delay_line->ptr_current; // chess_storage(DMB)
|
|
||||||
|
|
||||||
p_x1 = cyclic_add(p_x1, -1, ptr_fir_lms_delay_line->ptr_start, ptr_fir_lms_delay_line->buffer_len);
|
|
||||||
|
|
||||||
int prod, x0, x1, h0, h1;
|
|
||||||
int chess_storage(DMB) *px_start = ptr_fir_lms_delay_line->ptr_start;
|
|
||||||
int delay_line_len = ptr_fir_lms_delay_line->buffer_len;
|
|
||||||
int n_coeff = ptr_fir_lms_coeffs->buffer_len;
|
|
||||||
|
|
||||||
accum_t acc_A, acc_B;
|
|
||||||
|
|
||||||
// Calculate the first term of the coefficient adaption
|
|
||||||
accum_t acc_C = fract_mult(mu, out);
|
|
||||||
#ifdef LPDSP16
|
|
||||||
prod = rnd_saturate16(acc_C);
|
|
||||||
#else
|
|
||||||
prod = rnd_saturate(acc_C);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
for (int i=0; i< n_coeff; i+=2) chess_loop_range(1,){
|
|
||||||
// Calculate the coefficient wise adaption
|
|
||||||
#ifdef PLATFORM_GENERIC
|
|
||||||
lldecompose(*((long long *)p_h0), &h0, &h1);
|
|
||||||
#else
|
|
||||||
lldecompose(*((long long *)p_h0), h0, h1);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
acc_A = fract_mult(h0, leak); // leaky
|
|
||||||
acc_B = fract_mult(h1, leak);
|
|
||||||
|
|
||||||
acc_A += fract_mult(prod, *p_x0); // TODO: This could be further optimized by using all 4 available accums?
|
|
||||||
acc_B += fract_mult(prod, *p_x1);
|
|
||||||
|
|
||||||
p_x0 = cyclic_add(p_x0, -2, px_start, delay_line_len);
|
|
||||||
p_x1 = cyclic_add(p_x1, -2, px_start, delay_line_len);
|
|
||||||
|
|
||||||
// update the current filter coefficients - dual sat; dual store
|
|
||||||
#ifdef LPDSP16
|
|
||||||
*((long long *)p_h0) = llcompose(rnd_saturate16(acc_A), rnd_saturate16(acc_B));//load/store hazard ! - 1 nop is needed
|
|
||||||
#else
|
|
||||||
*((long long *)p_h0) = llcompose(rnd_saturate(acc_A), rnd_saturate(acc_B));//load/store hazard ! - 1 nop is needed
|
|
||||||
#endif
|
|
||||||
p_h0+=2;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void adapt_coeffs_generic_single(BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int out){
|
|
||||||
int *p_h0 = ptr_fir_lms_coeffs->ptr_start; //coeff load pointer
|
|
||||||
int chess_storage(DMB) *p_x0 = ptr_fir_lms_delay_line->ptr_current; // chess_storage(DMB)
|
|
||||||
|
|
||||||
int prod;
|
|
||||||
|
|
||||||
accum_t acc_A, acc_B;
|
|
||||||
|
|
||||||
// Calculate the first term of the coefficient adaption
|
|
||||||
accum_t acc_C = fract_mult(mu, out);
|
|
||||||
prod = rnd_saturate(acc_C);
|
|
||||||
for (int i=0; i< ptr_fir_lms_delay_line->buffer_len; i++){
|
|
||||||
// Calculate the coefficient wise adaption
|
|
||||||
acc_A = to_accum(p_h0[i]);
|
|
||||||
acc_A += fract_mult(prod, *p_x0);
|
|
||||||
p_x0 = cyclic_add(p_x0, -1, ptr_fir_lms_delay_line->ptr_start, ptr_fir_lms_delay_line->buffer_len);
|
|
||||||
p_h0[i]=rnd_saturate(acc_A);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
void init(
|
void init(
|
||||||
SingleSignalPath *cSensorSignal,
|
SingleSignalPath *cSensorSignal,
|
||||||
SingleSignalPath *accSensorSignal,
|
SingleSignalPath *accSensorSignal,
|
||||||
@@ -585,11 +318,7 @@ void init(
|
|||||||
double lms_mu,
|
double lms_mu,
|
||||||
int lms_fir_num_coeffs
|
int lms_fir_num_coeffs
|
||||||
){
|
){
|
||||||
#ifdef LPDSP16
|
|
||||||
int scale_bits=15;
|
|
||||||
#else
|
|
||||||
int scale_bits=31;
|
int scale_bits=31;
|
||||||
#endif
|
|
||||||
|
|
||||||
// C-Sensor Initialisierung: Biquad, Delay, Weight skalieren und in Struct schreiben
|
// C-Sensor Initialisierung: Biquad, Delay, Weight skalieren und in Struct schreiben
|
||||||
sig_init_preemph_coef(cSensorSignal, b_c[0], b_c[1], b_c[2], b_c[3], b_c[4], scale_bits);
|
sig_init_preemph_coef(cSensorSignal, b_c[0], b_c[1], b_c[2], b_c[3], b_c[4], scale_bits);
|
||||||
@@ -605,14 +334,9 @@ void init(
|
|||||||
int scale = pow(2, scale_bits) - 1;
|
int scale = pow(2, scale_bits) - 1;
|
||||||
mu = lms_mu * scale;
|
mu = lms_mu * scale;
|
||||||
// Buffer Initialisierung (Delay Line und Koeffizienten) und anschließend alle Werte auf 0 setzen
|
// Buffer Initialisierung (Delay Line und Koeffizienten) und anschließend alle Werte auf 0 setzen
|
||||||
#if BLOCK_LEN == 1
|
|
||||||
sig_init_buffer_DMB(&ptr_fir_lms_delay_line, fir_lms_delay_line, lms_fir_num_coeffs, MAX_FIR_COEFFS);
|
sig_init_buffer_DMB(&ptr_fir_lms_delay_line, fir_lms_delay_line, lms_fir_num_coeffs, MAX_FIR_COEFFS);
|
||||||
sig_init_buffer(&ptr_fir_lms_coeffs, fir_lms_coeffs, lms_fir_num_coeffs, MAX_FIR_COEFFS);
|
sig_init_buffer(&ptr_fir_lms_coeffs, fir_lms_coeffs, lms_fir_num_coeffs, MAX_FIR_COEFFS);
|
||||||
#else
|
|
||||||
sig_init_buffer(&ptr_fir_lms_delay_line, fir_lms_delay_line, lms_fir_num_coeffs + BLOCK_LEN, BLOCK_LEN + MAX_FIR_COEFFS);
|
|
||||||
sig_init_buffer(&ptr_fir_lms_coeffs, fir_lms_coeffs, lms_fir_num_coeffs, MAX_FIR_COEFFS);
|
|
||||||
|
|
||||||
#endif
|
|
||||||
for (int i = 0; i < lms_fir_num_coeffs; i++) {
|
for (int i = 0; i < lms_fir_num_coeffs; i++) {
|
||||||
ptr_fir_lms_delay_line.ptr_start[i] = 0;
|
ptr_fir_lms_delay_line.ptr_start[i] = 0;
|
||||||
ptr_fir_lms_coeffs.ptr_start[i] = 0;
|
ptr_fir_lms_coeffs.ptr_start[i] = 0;
|
||||||
@@ -624,17 +348,9 @@ void init(
|
|||||||
void calc(
|
void calc(
|
||||||
SingleSignalPath *cSensorSignal,
|
SingleSignalPath *cSensorSignal,
|
||||||
SingleSignalPath *accSensorSignal,
|
SingleSignalPath *accSensorSignal,
|
||||||
// BufferPtrDMB *ptr_fir_lms_delay_line,
|
|
||||||
// BufferPtr *ptr_fir_lms_coeffs,
|
|
||||||
OutputMode output_mode,
|
OutputMode output_mode,
|
||||||
#if BLOCK_LEN != 1
|
|
||||||
int16_t *cSensor,
|
|
||||||
int16_t *accSensor,
|
|
||||||
#else
|
|
||||||
int16_t volatile chess_storage(DMB) *cSensor,
|
int16_t volatile chess_storage(DMB) *cSensor,
|
||||||
int16_t volatile chess_storage(DMB) *accSensor,
|
int16_t volatile chess_storage(DMB) *accSensor,
|
||||||
#endif
|
|
||||||
|
|
||||||
int16_t volatile chess_storage(DMB) *out_16
|
int16_t volatile chess_storage(DMB) *out_16
|
||||||
|
|
||||||
){
|
){
|
||||||
@@ -651,137 +367,32 @@ void calc(
|
|||||||
static int chess_storage(DMB) *p_out_32=out_32;
|
static int chess_storage(DMB) *p_out_32=out_32;
|
||||||
|
|
||||||
|
|
||||||
#ifdef LPDSP16
|
|
||||||
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_loop_range(1,){
|
|
||||||
cSensor_32[i]= (int) cSensor[i] ;
|
|
||||||
accSensor_32[i]= (int) accSensor[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
#else //LPDDSP32
|
|
||||||
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_loop_range(1,){
|
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_loop_range(1,){
|
||||||
cSensor_32[i] = ((int) cSensor[i]) << BITSHIFT_16_TO_32;
|
cSensor_32[i] = ((int) cSensor[i]) << BITSHIFT_16_TO_32;
|
||||||
accSensor_32[i] = ((int) accSensor[i]) << BITSHIFT_16_TO_32;
|
accSensor_32[i] = ((int) accSensor[i]) << BITSHIFT_16_TO_32;
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
|
|
||||||
// Apply bitshift, calculate the pre emphasis filter, delay and weight to each channel
|
// Apply bitshift, calculate the pre emphasis filter, delay and weight to each channel
|
||||||
//#define PRE_FILTER
|
|
||||||
#ifdef PRE_FILTER
|
|
||||||
int x_csensor_emph, x_accsensor_emph, x_csensor_emph_delay, x_accsensor_emph_delay;
|
|
||||||
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_loop_range(1,){
|
|
||||||
x_csensor_emph = sig_calc_biquad(cSensorSignal, cSensor_32);
|
|
||||||
x_accsensor_emph = sig_calc_biquad(accSensorSignal, accSensor_32);
|
|
||||||
x_csensor_emph_delay = sig_delay_buffer_load_and_get(cSensorSignal, x_csensor_emph);
|
|
||||||
x_accsensor_emph_delay = sig_delay_buffer_load_and_get(accSensorSignal, x_accsensor_emph);
|
|
||||||
c_block_pre[i] = sig_calc_weight(cSensorSignal, x_csensor_emph_delay);
|
|
||||||
acc_block_pre[i] = sig_calc_weight(accSensorSignal, x_accsensor_emph_delay);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_loop_range(1,){
|
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_loop_range(1,){
|
||||||
c_block_pre[i] = cSensor_32[i];
|
c_block_pre[i] = cSensor_32[i];
|
||||||
acc_block_pre[i] = accSensor_32[i];
|
acc_block_pre[i] = accSensor_32[i];
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
|
|
||||||
// Calculate the output in dependency of the selected output mode
|
// apply lms filter on cSensor signal
|
||||||
switch (output_mode)
|
|
||||||
{
|
|
||||||
case OUTPUT_MODE_C_SENSOR:
|
|
||||||
for (uint32_t i=0; i<BLOCK_LEN; i++){
|
|
||||||
out_32[i] = c_block_pre[i];
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case OUTPUT_MODE_ACC_SENSOR:
|
|
||||||
for (uint32_t i=0; i<BLOCK_LEN; i++){
|
|
||||||
out_32[i] = acc_block_pre[i];
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case OUTPUT_MODE_FIR: //output filtered cSensor signal
|
|
||||||
#if BLOCK_LEN == 1
|
|
||||||
// Increment the buffer pointer and set the current sample to the delay line
|
|
||||||
sig_cirular_buffer_ptr_put_sample_DMB(&ptr_fir_lms_delay_line, c_block_pre[0]);
|
|
||||||
out_32[0] = sig_calc_fir_lpdsp32_single(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs);
|
|
||||||
|
|
||||||
#else // Block processing
|
|
||||||
// Put the next block to the buffer
|
|
||||||
sig_circular_buffer_ptr_put_block(&ptr_fir_lms_delay_line, c_block_pre);
|
|
||||||
// Calculate the fir filter output
|
|
||||||
sig_calc_fir_lpdsp32_block(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32);
|
|
||||||
// Increment the buffer pointer to get ready for the next block
|
|
||||||
//sig_cirular_buffer_ptr_increment(&lms->delay_line, BLOCK_LEN);
|
|
||||||
#endif
|
|
||||||
break;
|
|
||||||
case OUTPUT_MODE_FIR_LMS: // apply lms filter on cSensor signal
|
|
||||||
#if BLOCK_LEN == 1
|
|
||||||
// Increment the buffer pointer and set the current sample to the delay line
|
// Increment the buffer pointer and set the current sample to the delay line
|
||||||
sig_cirular_buffer_ptr_put_sample_DMB(&ptr_fir_lms_delay_line, acc_block_pre[0]);
|
sig_cirular_buffer_ptr_put_sample_DMB(&ptr_fir_lms_delay_line, acc_block_pre[0]);
|
||||||
//*ptr_fir_lms_delay_line.ptr_current = acc_block_pre[0];
|
|
||||||
//ptr_fir_lms_delay_line.ptr_current = cyclic_add(ptr_fir_lms_delay_line.ptr_current, 1, ptr_fir_lms_delay_line.ptr_start, ptr_fir_lms_delay_line.buffer_len);
|
|
||||||
|
|
||||||
// Calculate the fir filter output on acc to get the canceller
|
// Calculate the fir filter output on acc to get the canceller
|
||||||
acc_block_filt[0]= sig_calc_fir_lpdsp32_single(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs);
|
acc_block_filt[0]= sig_calc_fir_lpdsp32_single(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs);
|
||||||
// Calculate the ouptut signal by c_block_pre - acc_block_filt
|
// Calculate the ouptut signal by c_block_pre - acc_block_filt
|
||||||
out_32[0] = c_block_pre[0] - acc_block_filt[0];
|
out_32[0] = c_block_pre[0] - acc_block_filt[0];
|
||||||
//if (counter >= 0){ //TODO: implement this and make it configurable
|
|
||||||
// Calculate the coefficient adaptation
|
// Calculate the coefficient adaptation
|
||||||
//adapt_coeffs_generic_single(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32[0]);
|
|
||||||
adapt_coeffs_lpdsp32_single_v1(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32[0]);
|
adapt_coeffs_lpdsp32_single_v1(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32[0]);
|
||||||
//counter=0;
|
|
||||||
// }
|
|
||||||
// else{
|
|
||||||
// counter++;
|
|
||||||
// }
|
|
||||||
#else // Block processing
|
|
||||||
// Put the next block to the buffer
|
|
||||||
sig_circular_buffer_ptr_put_block(&ptr_fir_lms_delay_line, acc_block_pre);
|
|
||||||
// Calculate the fir filter output on acc to get the canceller
|
|
||||||
sig_calc_fir_lpdsp32_block(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, acc_block_filt);
|
|
||||||
|
|
||||||
// Calculate the ouptut signal by c_block_pre - acc_block_filt
|
|
||||||
for (int i=0; i<BLOCK_LEN; i++) chess_flatten_loop
|
|
||||||
{
|
|
||||||
//sig_cirular_buffer_ptr_put_sample(&lms->delay_line, acc_block_pre[i]);
|
|
||||||
//acc_block_filt[i]= sig_calc_fir_lpdsp32_single(lms);
|
|
||||||
out_32[i] = c_block_pre[i] - acc_block_filt[i]; // 15 cycles with 4 samples/block
|
|
||||||
// adapt the coefficients with respect to the last sample in the block
|
|
||||||
}
|
|
||||||
//adapt_coeffs_lpdsp32_single(lms, out_32[1]);
|
|
||||||
adapt_coeffs_lpdsp32_block(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32[0]);
|
|
||||||
// Increment the buffer pointer to get ready for the next block
|
|
||||||
//sig_cirular_buffer_ptr_increment(&lms->delay_line, BLOCK_LEN);
|
|
||||||
#endif
|
|
||||||
break;
|
|
||||||
case OUTPUT_MODE_FIR_LMS_LEAKY: // apply lms filter on cSensor signal
|
|
||||||
// Increment the buffer pointer and set the current sample to the delay line
|
|
||||||
sig_cirular_buffer_ptr_put_sample_DMB(&ptr_fir_lms_delay_line, acc_block_pre[0]);
|
|
||||||
|
|
||||||
// Calculate the fir filter output on acc to get the canceller
|
|
||||||
acc_block_filt[0]= sig_calc_fir_lpdsp32_single(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs);
|
|
||||||
// Calculate the ouptut signal by c_block_pre - acc_block_filt
|
|
||||||
out_32[0] = c_block_pre[0] - acc_block_filt[0];
|
|
||||||
//if (counter >= 0){ //TODO: implement this and make it configurable
|
|
||||||
// Calculate the coefficient adaptation
|
|
||||||
//adapt_coeffs_generic_single(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32[0]);
|
|
||||||
adapt_coeffs_lpdsp32_single_leaky(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32[0]);
|
|
||||||
|
|
||||||
break;
|
|
||||||
default: // MUTED
|
|
||||||
for (uint32_t i=0; i<BLOCK_LEN; i++){
|
|
||||||
out_32[i] = 0;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
// TODO: Add a couple of biqads after ANC
|
// TODO: Add a couple of biqads after ANC
|
||||||
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_flatten_loop
|
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_flatten_loop
|
||||||
{
|
{
|
||||||
#ifdef LPDSP16
|
|
||||||
out_16[i] = (int16_t) out_32[i];
|
|
||||||
#else
|
|
||||||
out_16[i] = rnd_saturate(to_accum(out_32[i]) >> BITSHIFT_16_TO_32); // 12 cycles for blocksize 4 //TODO: use rnd_saturate(out_32[i] >> input_nbit_bitshift)
|
out_16[i] = rnd_saturate(to_accum(out_32[i]) >> BITSHIFT_16_TO_32); // 12 cycles for blocksize 4 //TODO: use rnd_saturate(out_32[i] >> input_nbit_bitshift)
|
||||||
#endif
|
}
|
||||||
|
|
||||||
|
|
||||||
}
|
|
||||||
//out_16[0] = cSensor[0];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user