Erstcommit

This commit is contained in:
Patrick Hangl
2026-01-08 15:59:49 +01:00
commit 1546b56f24
6 changed files with 2149 additions and 0 deletions

145
original_files/orig_main.c Normal file
View File

@@ -0,0 +1,145 @@
//#define SIMULATE
#ifdef SIMULATE
#include <stdio.h>
#endif
#include <stdint.h>
#include "signalProcessing/include/signal_path.h"
#define CSS_CMD 0xC00004
// Define the specific interrupt that the cm3 will trigger when it wants
// us to perform a calculation
#define CSS_CMD_0 (1<<0)
#define CSS_CMD_1 (1<<1)
// Define the shared memory between the ARM and LPDSP processors
#define INPUT_PORT0_ADD 0x800000 // TODO: if BLOCK_LEN >1 is used, the data is interleaved: ch0ch1, ch0ch1 ....
//#define INPUT_PORT1_ADD INPUT_PORT0_ADD + 2 //DMB
#define OUTPUT_PORT_ADD (INPUT_PORT0_ADD + 16) // 2* for 2 channels
// Define the interrupt register to notify the ARM of a completed operation
volatile static unsigned char chess_storage(DMIO:CSS_CMD) CssCmdGen;
// handling requests from the CM3 is activated
static volatile int actionRequired;
static SingleSignalPath cSensorSignal;
static SingleSignalPath accSensorSignal;
#if BLOCK_LEN == 1
static volatile int16_t chess_storage(DMB:INPUT_PORT0_ADD) intputPort[4]; //TODO: if BLOCK_LEN >1 is used, the data is interleaved: ch0ch1, ch0ch1 .... chess_storage(DMA % alignof(int)) ?
//static volatile int16_t chess_storage(DMB:INPUT_PORT1_ADD) intputPort1[BLOCK_LEN];
static volatile int16_t chess_storage(DMB:OUTPUT_PORT_ADD) outputPort[4];
static volatile int16_t chess_storage(DMB) *inPtr0;
static volatile int16_t chess_storage(DMB) *inPtr1;
static volatile int16_t chess_storage(DMB) *outPtr;
static volatile int16_t chess_storage(DMB) sample;
static volatile int16_t chess_storage(DMB) *sample_ptr;
#else
static int16_t chess_storage(DMA) intputPort[BLOCK_LEN]; //chess_storage(DMA:INPUT_PORT_ADD) TODO: volatile? chess_storage(DMA % alignof(int))
//static int16_t chess_storage(DMA) intputPort1[BLOCK_LEN]; //chess_storage(DMA:INPUT_PORT_ADD)
static int16_t chess_storage(DMB) outputPort[BLOCK_LEN]; // chess_storage(DMB:OUTPUT_PORT_ADD) TODO: determine output port add
#endif
extern "C" void isr0() property (isr) {
// raise the flag indicating something needs to be processed
actionRequired = 1;
}
#ifdef __chess__
extern "C"
#endif
int main(void) {
static OutputMode mode = OUTPUT_MODE_FIR_LMS;
// Initialize the signal path
// Initialize the csensor signal subpath
// Instanciate the signal path state structs
// Deactivate preemphasis filter by initializing with coefficients {1., 0., 0., 0., 0.}
// biquad filter coefficients - off
double b0[5]={0.75, 0., 0., 0., 0.};
double b1[5]={0.75, 0., 0., 0., 0.};
int N_lms_fir_coeffs = MAX_FIR_COEFFS; // always test with max coeffs
init(
&cSensorSignal, &accSensorSignal,
//&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs,
b0,
b1,
2, // sample delay
2,
0.9, // weight
0.9,
0.01, // lms learning rate
N_lms_fir_coeffs // Numer of lms fir coefficients
);
if (mode == OUTPUT_MODE_FIR){ //FIR filter mit fixen coeffizienten wenn nicht adaptiv
for (int i=0; i<N_lms_fir_coeffs; i++){
#ifdef LPDSP16
ptr_fir_lms_coeffs.ptr_start[i] = ((pow(2, 15)-1) /N_lms_fir_coeffs);
#else
ptr_fir_lms_coeffs.ptr_start[i] = ((pow(2, 31)-1) /N_lms_fir_coeffs);
#endif
}
}
#ifdef SIMULATE // use the simulator with file I/O
FILE *fp1 = fopen("./test/testdata/input/chirp_disturber.txt", "r");
FILE *fp2 = fopen("./test/testdata/input/disturber.txt", "r");
FILE *fp3 = fopen("./test/testdata/output/out_simulated.txt", "w");
int d0, d1;
while (!(feof(fp1) || feof(fp2))){
for (int i=0; i<BLOCK_LEN; i++){
fscanf(fp1, "%d", &d0); //load blocks
fscanf(fp2, "%d", &d1);
intputPort[i] = (int16_t) d0;
intputPort[i+1] = (int16_t) d1;
}
calc(
&cSensorSignal, &accSensorSignal,
//&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs,
mode,
&intputPort[0],
&intputPort[1],
outputPort
);
for (int i=0; i<BLOCK_LEN; i++){
fprintf(fp3, "%d\n", outputPort[i]);
}
}
fclose(fp1);
fclose(fp2);
fclose(fp3);
#else // how its done in hw
// enable the interrupts
enable_interrupts();
outPtr = &outputPort[1]; // start with second half of buffer
sample_ptr = &sample;
/*Signalprocessing, called by an interrupt*/
actionRequired = 0;
while (1){
CssCmdGen = CSS_CMD_1; // indicate going to sleep to the cm3
core_halt();
if (actionRequired == 1) {
CssCmdGen = CSS_CMD_0; // indicate wakeup to the cm3
actionRequired = 0;
outPtr = cyclic_add(outPtr, 2, outputPort, 4);
*outPtr = *sample_ptr;
calc(&cSensorSignal, &accSensorSignal, mode, &intputPort[1], &intputPort[0], sample_ptr);
}
}
#endif
}

View File

@@ -0,0 +1,784 @@
#include "include/signal_path.h"
/* Global variables decleration*/
static int counter=0;
static int mu;
#ifdef LPDSP16
//static int leak=24576; //0.75
//static int leak=29491; //0.9
//static int leak=31129; //0.95 // no effect
static int leak=32735; //0.999 // (1 ? µ?)
//static int leak=32766; //0.99999
#else
//static int leak=2145336164; //0.999 // (1 ? µ?)
static int leak=2147462173; //0.999 // (1 ? µ?)
#endif
#if BLOCK_LEN == 1
int chess_storage(DMB) fir_lms_delay_line[MAX_FIR_COEFFS];
BufferPtrDMB chess_storage(DMB) ptr_fir_lms_delay_line;
BufferPtr ptr_fir_lms_coeffs;
#else
int chess_storage(DMA%(sizeof(long long))) fir_lms_delay_line[BLOCK_LEN + MAX_FIR_COEFFS]; // The delay line for the adaptive filter
BufferPtr ptr_fir_lms_delay_line;
BufferPtr ptr_fir_lms_coeffs;
#endif
int chess_storage(DMA % (sizeof(long long))) fir_lms_coeffs[MAX_FIR_COEFFS]; // The coefficients for the adaptive filter
#ifdef PLATFORM_GENERIC
// lpdsp32 functionallity moddeling functions
accum_t fract_mult(int a, int b){
long int a_long = a;
long int b_long = b;
return (b_long * a_long);
}
accum_t to_accum(int a){
long int a_long = (long int) a;
return a_long << 31;
}
int rnd_saturate(accum_t a){
return a >> 31;
}
int extract_high(accum_t a){
return a >> 31;
}
void lldecompose(unsigned long long l, int* int1, int* int2){
*int2 = (int)(l >> 32);
*int1 = (int)(l);
}
uint64_t llcompose(int a, int b) {
uint64_t result = (uint64_t)b; // Assign b to the higher 32 bits of the result
result <<= 32; // Shift the higher 32 bits to the left
result |= (uint32_t)a; // Bitwise OR operation with the lower 32 bits of a
return result;
}
// unsigned long long llcompose(int a, int b){
// unsigned long long l;
// l = a << 32;
// l |= b;
// return l;
//}
int* cyclic_add(int *ptr, int i_pp, int *ptr_start, int buffer_len){
int *p_ptr=ptr;
for (int i=0; i < abs(i_pp); i+=1){ // end of buffer wraparound
if (i_pp > 0){
p_ptr ++;
if (p_ptr >= ptr_start + buffer_len){
p_ptr=ptr_start;
}
}
else{ // start of buffer wraparound
p_ptr--;
if (p_ptr < ptr_start){
p_ptr=ptr_start + (buffer_len -1);
}
}
}
return p_ptr;
}
#endif
/*Round saturate with 16 bits return value */
int static inline rnd_saturate16(accum_t acc){ //maybe int16_fast type?
acc = to_accum( // saturate
rnd_saturate(acc << 32)
);
return rnd_saturate(acc >> 16); //round
}
int sig_init_buffer(BufferPtr *buffer, int *buffer_start_add, int length, int max_buffer_len) {
buffer->buffer_len = length;
buffer->ptr_start = buffer_start_add;
buffer->ptr_current = buffer_start_add;
// initialize delay line with 0
for (int i = 0; i < length; i++) {
buffer_start_add[i] = 0;
}
if (length<max_buffer_len){
return 0;
}
else{
return 1;
}
}
int sig_init_buffer_DMB(BufferPtrDMB chess_storage(DMB) *buffer, int chess_storage(DMB) *buffer_start_add, int length, int max_buffer_len){
buffer->buffer_len = length;
buffer->ptr_start = buffer_start_add;
buffer->ptr_current = buffer_start_add;
// initialize delay line with 0
for (int i = 0; i < length; i++) {
buffer_start_add[i] = 0;
}
if (length<max_buffer_len){
return 0;
}
else{
return 1;
}
}
void sig_cirular_buffer_ptr_increment(BufferPtr *buffer, int i_incr){
buffer->ptr_current = cyclic_add(buffer->ptr_current, i_incr, buffer->ptr_start, buffer->buffer_len);
}
void sig_cirular_buffer_ptr_increment_DMB(BufferPtrDMB *buffer, int i_incr){
buffer->ptr_current = cyclic_add(buffer->ptr_current, i_incr, buffer->ptr_start, buffer->buffer_len);
}
void sig_cirular_buffer_ptr_put_sample(BufferPtr *buffer, int sample){
*buffer->ptr_current = sample;
buffer->ptr_current = cyclic_add(buffer->ptr_current, 1, buffer->ptr_start, buffer->buffer_len);
}
void sig_cirular_buffer_ptr_put_sample_DMB(BufferPtrDMB chess_storage(DMB) *buffer, int sample){
*buffer->ptr_current = sample;
buffer->ptr_current = cyclic_add(buffer->ptr_current, 1, buffer->ptr_start, buffer->buffer_len);
}
void static inline sig_circular_buffer_ptr_put_block(BufferPtr *buffer, int* block){
// increment pointer to oldest block
//buffer->ptr_current = cyclic_add(buffer->ptr_current, BLOCK_LEN, buffer->ptr_start, buffer->buffer_len);
// load the next block
for (int i=0; i<BLOCK_LEN; i+=2){
buffer->ptr_current[0] = block[i]; // TODO: use llcompose
buffer->ptr_current[1] = block[i+1];
buffer->ptr_current = cyclic_add(buffer->ptr_current, 2, buffer->ptr_start, buffer->buffer_len);
}
}
void sig_init_preemph_coef(SingleSignalPath *signal, double b0, double b1, double b2, double a1, double a2, int scale_bits) {
// Check first if filter is actually activated
if (b0 == 1. && b1 == 0. && b2 == 0. && a1 == 0. && a2 == 0.) {
signal->preemph_activated = 0;
}
else{
signal->preemph_activated = 1;
signal->_preemph_scale_nbits = scale_bits;
int scale = pow(2, scale_bits) - 1;
signal->b_preemph[0] = b0 * scale;
signal->b_preemph[1] = b1 * scale;
signal->b_preemph[2] = b2 * scale;
signal->b_preemph[3] = a1 * scale;
signal->b_preemph[4] = a2 * scale;
}
}
/*Initialization functions - make sure all of them were called to ensure functionality*/
int sig_init_delay(SingleSignalPath *signal, int n_delay) {
return sig_init_buffer(&signal->delay_buffer, signal->_delay_buffer, n_delay, MAX_DELAY_SAMPS);
}
void sig_init_weight(SingleSignalPath *signal, double weight, int scale_nbits) {
if (weight == 1.) {
signal->weight_actived = 0;
}
else{
signal->weight_actived = 1;
int scale = pow(2, scale_nbits) - 1;
signal->weight = weight * scale;
signal->_weight_scale_nbits = scale_nbits;
}
}
/*Calculator functions for the given signal path*/
/*Calculate one biquad filter element*/
int sig_calc_biquad(SingleSignalPath *signal, int x) {
if (signal->preemph_activated == 0) {
return x;
}
accum_t sum =
fract_mult(x, signal->b_preemph[0]) + fract_mult(signal->_xd[0], signal->b_preemph[1]) +
fract_mult(signal->_xd[1], signal->b_preemph[2]) + fract_mult(signal->_yd[0], signal->b_preemph[3]) +
fract_mult(signal->_yd[1],signal->b_preemph[4]);
#ifdef LPDSP16
int y = rnd_saturate16(sum << 1);
#else
int y = rnd_saturate(sum << 1);
#endif
signal->_xd[1] = signal->_xd[0];
signal->_xd[0] = x;
signal->_yd[1] = signal->_yd[0];
signal->_yd[0] = y;
return y;
}
int inline sig_get_delayed_sample(SingleSignalPath *signal) {
return *signal->delay_buffer.ptr_current;
}
int sig_delay_buffer_load_and_get(SingleSignalPath *signal, int x) {
if (signal->delay_buffer.buffer_len == 0) {
return x;
}
int out = *signal->delay_buffer.ptr_current;
*signal->delay_buffer.ptr_current = x;
sig_cirular_buffer_ptr_increment(&signal->delay_buffer, 1);
return out;
}
int sig_calc_weight(SingleSignalPath *signal, int x) {
if (signal->weight_actived == 0) {
return x;
}
accum_t acc = fract_mult(x, signal->weight);
return rnd_saturate(acc);
}
#if BLOCK_LEN!=1 // Block processing
/*lpdsp32 fir filter example adapted from user guide
#define NS 256 //No. of samples
#define N 64 //No. of filter coefficients or No. of tap weights
int chess_storage(DMB) y[NS]; //Output Signal
int chess_storage(DMA %(sizeof(long long))) x[NS+N-1]; //Input Signal
//Filter coefficients or tap weights
int chess_storage(DMA %(sizeof(long long))) h[N];
*/
void sig_calc_fir_lpdsp32_block(BufferPtr *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int chess_storage(DMB) *out){
//void fir(int *y, int *x, int *h)
static int chess_storage(DMA) *p_x; // pointer to the start of the last added block
static int chess_storage(DMA) *p_h; // pointer to the start of the filter coefficients
static int chess_storage(DMB) *p_y; // pointer to the output port
p_y = out;
int *px_start = ptr_fir_lms_delay_line->ptr_start;
int *ph_start = ptr_fir_lms_coeffs->ptr_current;
int delay_line_len = ptr_fir_lms_delay_line->buffer_len;
int n_coeff = ptr_fir_lms_coeffs->buffer_len;
int coef1, coef2;
int dat1, dat2;
for(unsigned int n=0; n<BLOCK_LEN; n+=2) chess_loop_range(1,){
//p_x = x + n;
p_x = cyclic_add(px_start, n, px_start, delay_line_len);
p_h = ph_start;
#ifdef PLATFORM_GENERIC
lldecompose(*((long long *)p_h), &coef1, &coef2);
#else
lldecompose(*((long long *)p_h), coef1, coef2);
#endif
p_h+=2;
#ifdef PLATFORM_GENERIC
lldecompose(*((long long *)p_x), &dat2, &dat1);
#else
lldecompose(*((long long *)p_x), dat2, dat1);
#endif
p_x = cyclic_add(p_x, -2, px_start, delay_line_len);
accum_t sum1 = fract_mult(dat1, coef1);
accum_t sum2 = fract_mult(dat2, coef1);
sum1 += fract_mult(dat2 , coef2);
sum1 = to_accum(rnd_saturate(sum1));
for(int k=2; k < n_coeff; k+=2) chess_loop_range(1,){
#ifdef PLATFORM_GENERIC
lldecompose(*((long long *)p_x), &dat2, &dat1);
#else
lldecompose(*((long long *)p_x), dat2, dat1);
#endif
p_x = cyclic_add(p_x, -2, px_start, delay_line_len);
sum2 += fract_mult(dat1, coef2);
sum2 = to_accum(rnd_saturate(sum2));
#ifdef PLATFORM_GENERIC
lldecompose(*((long long *)p_h), &coef1, &coef2);
#else
lldecompose(*((long long *)p_h), coef1, coef2);
#endif
p_h+=2;
sum1 += fract_mult(dat1, coef1);
sum2 += fract_mult(dat2, coef1);
sum1 += fract_mult(dat2, coef2);
sum1 = to_accum(rnd_saturate(sum1));
}
#ifdef PLATFORM_GENERIC
lldecompose(*((long long *)p_x), &dat2, &dat1);
#else
lldecompose(*((long long *)p_x), dat2, dat1);
#endif
sum2 += fract_mult(dat1, coef2);
sum2 = to_accum(rnd_saturate(sum2));
*p_y++ = extract_high(sum2);
*p_y++ = extract_high(sum1);
}
}
void sig_calc_fir_generic_block(BufferPtr *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int chess_storage(DMB) *out){
static int chess_storage(DMA) *p_x; // pointer to the start of the last added block
static int chess_storage(DMA) *p_h; // pointer to the start of the filter coefficients
static int chess_storage(DMB) *p_y; // pointer to the output port
static int coef1, coef2;
static int dat1, dat2;
p_x = ptr_fir_lms_delay_line->ptr_current;
p_h = ptr_fir_lms_coeffs->ptr_current;
p_y = out;
for(int n=0; n<BLOCK_LEN; n+=2)
{
p_x = cyclic_add(ptr_fir_lms_delay_line->ptr_current, n, ptr_fir_lms_delay_line->ptr_start, ptr_fir_lms_delay_line->buffer_len); // can be done in increments of two, assuming the buffer pointer increment is even
accum_t sum = to_accum(0);
for(int k=0; k < ptr_fir_lms_coeffs->buffer_len; k+=2) chess_loop_range(1,)
{
sum += fract_mult(p_x[0] , p_h[k]);
sum += fract_mult(p_x[1] , p_h[k+1]);
sum = to_accum(rnd_saturate(sum));
p_x = cyclic_add(p_x, -2, ptr_fir_lms_delay_line->ptr_start, ptr_fir_lms_delay_line->buffer_len); // can be done in increments of two, assuming the buffer pointer increment is even
}
*p_y++ = extract_high(sum);
}
}
/* "out" is actually an input to the function and is the output of the fir_lms filter system*/
void adapt_coeffs_lpdsp32_block(BufferPtr *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int out){ // only works for even delay line sample pointers!!
int *p_x = ptr_fir_lms_delay_line->ptr_current; // pointer to the start of the last added block - TODO: doublecheck this - might be wrong because the pointer actually points to the end of the block!
int *p_x_start = ptr_fir_lms_delay_line->ptr_start;
int *p_h = ptr_fir_lms_coeffs->ptr_current; // pointer to the start of the filter coefficients
int delay_line_len = ptr_fir_lms_delay_line->buffer_len;
int n_coeff = ptr_fir_lms_coeffs->buffer_len;
int prod0, x0, x1, h0, h1;
// Calculate the first term of the coefficient adaption
accum_t acc_C = fract_mult(mu, out);
prod0 = rnd_saturate(acc_C);
//acc_D = fract_mult(mu, out1);
//prod1 = rnd_saturate(acc_C);
for (int i=0; i<n_coeff; i+=2) chess_loop_range(1, ){
// Calculate the coefficient wise adaption
// utilize dual load and dual pointer update
// load first sample and coefficient
#ifdef PLATFORM_GENERIC
lldecompose(*((long long *)p_h), &h0, &h1);
#else
lldecompose(*((long long *)p_h), h0, h1);
#endif
accum_t acc_A = to_accum(h0);
accum_t acc_B = to_accum(h1);
#ifdef PLATFORM_GENERIC
lldecompose(*((long long *)p_x), &x0, &x1);
#else
lldecompose(*((long long *)p_x), x0, x1);
#endif
p_x = cyclic_add(p_x, -2, p_x_start, delay_line_len); // can be done in increments of two, assuming the buffer pointer increment is even
// initialize accumulators with old coefficients, calculate the adaptions and accumulate
acc_A += fract_mult(prod0, x0); // TODO: This can be further optimized by using all 4 available accums!
acc_B += fract_mult(prod0, x1);
// update the current filter coefficients - dual rnd_sat; dual store
*((long long *)p_h) = llcompose(rnd_saturate(acc_A), rnd_saturate(acc_B));// load/store hazard ! - 1nop
p_h+=2;
}
}
#else
int inline sig_calc_fir_lpdsp32_single(BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs){
// Calculate the fir filter output on x to get the canceller
int chess_storage(DMB) *p_x0 = ptr_fir_lms_delay_line->ptr_current; // chess_storage(DMB)
int chess_storage(DMB) *px_start = ptr_fir_lms_delay_line->ptr_start;
int *p_h = ptr_fir_lms_coeffs->ptr_current;
int delay_line_len = ptr_fir_lms_delay_line->buffer_len;
int n_coeff = ptr_fir_lms_coeffs->buffer_len;
int d0,d1,h0,h1;
accum_t acc1_A = to_accum(0);
accum_t acc1_B = to_accum(0);
accum_t acc1_C;
// iterate over the coefficients to calculate the filter on x - the canceller
/* Abschaetzung cycles per 2coefficient:
dual - load : 1
dual mac and dual load: 1
-> 48/2 * 2 = 48 cycles for 48 coefficents
*/
for (int i=0; i < n_coeff; i+=2) chess_loop_range(1,){
// Use dual load and dual pointer update
d0 = *p_x0;
h0 = *p_h;
p_h++;
p_x0 = cyclic_add(p_x0, -1, px_start, delay_line_len);
d1 = *p_x0;
h1 = *p_h;
p_h++;
p_x0 = cyclic_add(p_x0, -1, px_start, delay_line_len);
acc1_A+=fract_mult(d0, h0);
acc1_B+=fract_mult(d1, h1);
#ifndef LPDSP16
acc1_A = to_accum(rnd_saturate(acc1_A));
acc1_B = to_accum(rnd_saturate(acc1_B));
#endif
}
// Calculate the output sample
acc1_C = acc1_A + acc1_B;
//out32 = rnd_saturate(acc1_A);
#ifdef LPDSP16
return rnd_saturate16(acc1_C);
#else
return rnd_saturate(acc1_C);
#endif
}
void static inline adapt_coeffs_lpdsp32_single_v1(BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int out){
int chess_storage(DMA) *p_h0 = ptr_fir_lms_coeffs->ptr_start; //coeff load pointer
//int chess_storage(DMA) *p_h1 = ptr_fir_lms_coeffs->ptr_start; //coeff store pointer
int chess_storage(DMB) *p_x0 = ptr_fir_lms_delay_line->ptr_current; // chess_storage(DMB)
int chess_storage(DMB) *p_x1 = ptr_fir_lms_delay_line->ptr_current; // chess_storage(DMB)
p_x1 = cyclic_add(p_x1, -1, ptr_fir_lms_delay_line->ptr_start, ptr_fir_lms_delay_line->buffer_len);
int prod, x0, x1, h0, h1;
int chess_storage(DMB) *px_start = ptr_fir_lms_delay_line->ptr_start;
int delay_line_len = ptr_fir_lms_delay_line->buffer_len;
int n_coeff = ptr_fir_lms_coeffs->buffer_len;
accum_t acc_A, acc_B;
// Calculate the first term of the coefficient adaption
accum_t acc_C = fract_mult(mu, out);
#ifdef LPDSP16
prod = rnd_saturate16(acc_C);
#else
prod = rnd_saturate(acc_C);
#endif
/* Abschätzung cycles per 2 coefficient:
dual load coeffs: 1
single load tab value: 2
dual mac: 1
dual rnd_sat - store: 1
load/store hazard nop: 1
*/
for (int i=0; i< n_coeff; i+=2) chess_loop_range(1,){
// Calculate the coefficient wise adaption
#ifdef PLATFORM_GENERIC
lldecompose(*((long long *)p_h0), &h0, &h1);
#else
lldecompose(*((long long *)p_h0), h0, h1);
#endif
acc_A = to_accum(h0);
acc_B = to_accum(h1);
#ifdef LPDSP16
acc_A += fract_mult(prod, *p_x0) << 16; // TODO: This could be further optimized by using all 4 available accums?
acc_B += fract_mult(prod, *p_x1) << 16;
#else
acc_A += fract_mult(prod, *p_x0); // TODO: This could be further optimized by using all 4 available accums?
acc_B += fract_mult(prod, *p_x1);
#endif
p_x0 = cyclic_add(p_x0, -2, px_start, delay_line_len);
p_x1 = cyclic_add(p_x1, -2, px_start, delay_line_len);
// update the current filter coefficients - dual sat; dual store
*((long long *)p_h0) = llcompose(rnd_saturate(acc_A), rnd_saturate(acc_B));//load/store hazard ! - 1 nop is needed
p_h0+=2;
}
}
void static inline adapt_coeffs_lpdsp32_single_leaky(BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int out){
int chess_storage(DMA) *p_h0 = ptr_fir_lms_coeffs->ptr_start; //coeff load pointer
//int chess_storage(DMA) *p_h1 = ptr_fir_lms_coeffs->ptr_start; //coeff store pointer
int chess_storage(DMB) *p_x0 = ptr_fir_lms_delay_line->ptr_current; // chess_storage(DMB)
int chess_storage(DMB) *p_x1 = ptr_fir_lms_delay_line->ptr_current; // chess_storage(DMB)
p_x1 = cyclic_add(p_x1, -1, ptr_fir_lms_delay_line->ptr_start, ptr_fir_lms_delay_line->buffer_len);
int prod, x0, x1, h0, h1;
int chess_storage(DMB) *px_start = ptr_fir_lms_delay_line->ptr_start;
int delay_line_len = ptr_fir_lms_delay_line->buffer_len;
int n_coeff = ptr_fir_lms_coeffs->buffer_len;
accum_t acc_A, acc_B;
// Calculate the first term of the coefficient adaption
accum_t acc_C = fract_mult(mu, out);
#ifdef LPDSP16
prod = rnd_saturate16(acc_C);
#else
prod = rnd_saturate(acc_C);
#endif
for (int i=0; i< n_coeff; i+=2) chess_loop_range(1,){
// Calculate the coefficient wise adaption
#ifdef PLATFORM_GENERIC
lldecompose(*((long long *)p_h0), &h0, &h1);
#else
lldecompose(*((long long *)p_h0), h0, h1);
#endif
acc_A = fract_mult(h0, leak); // leaky
acc_B = fract_mult(h1, leak);
acc_A += fract_mult(prod, *p_x0); // TODO: This could be further optimized by using all 4 available accums?
acc_B += fract_mult(prod, *p_x1);
p_x0 = cyclic_add(p_x0, -2, px_start, delay_line_len);
p_x1 = cyclic_add(p_x1, -2, px_start, delay_line_len);
// update the current filter coefficients - dual sat; dual store
#ifdef LPDSP16
*((long long *)p_h0) = llcompose(rnd_saturate16(acc_A), rnd_saturate16(acc_B));//load/store hazard ! - 1 nop is needed
#else
*((long long *)p_h0) = llcompose(rnd_saturate(acc_A), rnd_saturate(acc_B));//load/store hazard ! - 1 nop is needed
#endif
p_h0+=2;
}
}
void adapt_coeffs_generic_single(BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int out){
int *p_h0 = ptr_fir_lms_coeffs->ptr_start; //coeff load pointer
int chess_storage(DMB) *p_x0 = ptr_fir_lms_delay_line->ptr_current; // chess_storage(DMB)
int prod;
accum_t acc_A, acc_B;
// Calculate the first term of the coefficient adaption
accum_t acc_C = fract_mult(mu, out);
prod = rnd_saturate(acc_C);
for (int i=0; i< ptr_fir_lms_delay_line->buffer_len; i++){
// Calculate the coefficient wise adaption
acc_A = to_accum(p_h0[i]);
acc_A += fract_mult(prod, *p_x0);
p_x0 = cyclic_add(p_x0, -1, ptr_fir_lms_delay_line->ptr_start, ptr_fir_lms_delay_line->buffer_len);
p_h0[i]=rnd_saturate(acc_A);
}
}
#endif
void init(
SingleSignalPath *cSensorSignal,
SingleSignalPath *accSensorSignal,
//BufferPtrDMB *ptr_fir_lms_delay_line,
//BufferPtr *ptr_fir_lms_coeffs,
double *b_c,
double *b_acc,
int delay_c,
int delay_acc,
double weight_c,
double weight_acc,
double lms_mu,
int lms_fir_num_coeffs
){
#ifdef LPDSP16
int scale_bits=15;
#else
int scale_bits=31;
#endif
sig_init_preemph_coef(cSensorSignal, b_c[0], b_c[1], b_c[2], b_c[3], b_c[4], scale_bits);
sig_init_delay(cSensorSignal, delay_c);
sig_init_weight(cSensorSignal, weight_c, scale_bits);
// // Initialize the accSensor signal subpath
sig_init_preemph_coef(accSensorSignal, b_acc[0], b_acc[1], b_acc[2], b_acc[3], b_acc[4], scale_bits);
sig_init_delay(accSensorSignal, delay_acc);
sig_init_weight(accSensorSignal, weight_acc, 31);
// initialize the lms filter parameters
int scale = pow(2, scale_bits) - 1;
mu = lms_mu * scale;
// initialize the fir_lms buffers
#if BLOCK_LEN == 1
sig_init_buffer_DMB(&ptr_fir_lms_delay_line, fir_lms_delay_line, lms_fir_num_coeffs, MAX_FIR_COEFFS);
sig_init_buffer(&ptr_fir_lms_coeffs, fir_lms_coeffs, lms_fir_num_coeffs, MAX_FIR_COEFFS);
#else
sig_init_buffer(&ptr_fir_lms_delay_line, fir_lms_delay_line, lms_fir_num_coeffs + BLOCK_LEN, BLOCK_LEN + MAX_FIR_COEFFS);
sig_init_buffer(&ptr_fir_lms_coeffs, fir_lms_coeffs, lms_fir_num_coeffs, MAX_FIR_COEFFS);
#endif
for (int i = 0; i < lms_fir_num_coeffs; i++) {
ptr_fir_lms_delay_line.ptr_start[i] = 0;
ptr_fir_lms_coeffs.ptr_start[i] = 0;
}
}
// Data d(cSensor) is signal + noise
// x (accSensor) is reference noise signal
void calc(
SingleSignalPath *cSensorSignal,
SingleSignalPath *accSensorSignal,
// BufferPtrDMB *ptr_fir_lms_delay_line,
// BufferPtr *ptr_fir_lms_coeffs,
OutputMode output_mode,
#if BLOCK_LEN != 1
int16_t *cSensor,
int16_t *accSensor,
#else
int16_t volatile chess_storage(DMB) *cSensor,
int16_t volatile chess_storage(DMB) *accSensor,
#endif
int16_t volatile chess_storage(DMB) *out_16
){
static int chess_storage(DMA) c_block_pre[BLOCK_LEN];
static int chess_storage(DMA) acc_block_pre[BLOCK_LEN];
static int chess_storage(DMA) cSensor_32[BLOCK_LEN];
static int chess_storage(DMA) accSensor_32[BLOCK_LEN];
static int chess_storage(DMB) acc_block_filt[BLOCK_LEN];
static int chess_storage(DMB) out_32[BLOCK_LEN];
static int chess_storage(DMA) *p_c_block_pre =c_block_pre;
static int chess_storage(DMA) *p_acc_block_filt =acc_block_pre;
static int chess_storage(DMB) *p_out_32=out_32;
#ifdef LPDSP16
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_loop_range(1,){
cSensor_32[i]= (int) cSensor[i] ;
accSensor_32[i]= (int) accSensor[i];
}
#else //LPDDSP32
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_loop_range(1,){
cSensor_32[i] = ((int) cSensor[i]) << BITSHIFT_16_TO_32;
accSensor_32[i] = ((int) accSensor[i]) << BITSHIFT_16_TO_32;
}
#endif
// Apply bitshift, calculate the pre emphasis filter, delay and weight to each channel
//#define PRE_FILTER
#ifdef PRE_FILTER
int x_csensor_emph, x_accsensor_emph, x_csensor_emph_delay, x_accsensor_emph_delay;
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_loop_range(1,){
x_csensor_emph = sig_calc_biquad(cSensorSignal, cSensor_32);
x_accsensor_emph = sig_calc_biquad(accSensorSignal, accSensor_32);
x_csensor_emph_delay = sig_delay_buffer_load_and_get(cSensorSignal, x_csensor_emph);
x_accsensor_emph_delay = sig_delay_buffer_load_and_get(accSensorSignal, x_accsensor_emph);
c_block_pre[i] = sig_calc_weight(cSensorSignal, x_csensor_emph_delay);
acc_block_pre[i] = sig_calc_weight(accSensorSignal, x_accsensor_emph_delay);
}
#else
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_loop_range(1,){
c_block_pre[i] = cSensor_32[i];
acc_block_pre[i] = accSensor_32[i];
}
#endif
// Calculate the output in dependency of the selected output mode
switch (output_mode)
{
case OUTPUT_MODE_C_SENSOR:
for (uint32_t i=0; i<BLOCK_LEN; i++){
out_32[i] = c_block_pre[i];
}
break;
case OUTPUT_MODE_ACC_SENSOR:
for (uint32_t i=0; i<BLOCK_LEN; i++){
out_32[i] = acc_block_pre[i];
}
break;
case OUTPUT_MODE_FIR: //output filtered cSensor signal
#if BLOCK_LEN == 1
// Increment the buffer pointer and set the current sample to the delay line
sig_cirular_buffer_ptr_put_sample_DMB(&ptr_fir_lms_delay_line, c_block_pre[0]);
out_32[0] = sig_calc_fir_lpdsp32_single(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs);
#else // Block processing
// Put the next block to the buffer
sig_circular_buffer_ptr_put_block(&ptr_fir_lms_delay_line, c_block_pre);
// Calculate the fir filter output
sig_calc_fir_lpdsp32_block(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32);
// Increment the buffer pointer to get ready for the next block
//sig_cirular_buffer_ptr_increment(&lms->delay_line, BLOCK_LEN);
#endif
break;
case OUTPUT_MODE_FIR_LMS: // apply lms filter on cSensor signal
#if BLOCK_LEN == 1
// Increment the buffer pointer and set the current sample to the delay line
sig_cirular_buffer_ptr_put_sample_DMB(&ptr_fir_lms_delay_line, acc_block_pre[0]);
//*ptr_fir_lms_delay_line.ptr_current = acc_block_pre[0];
//ptr_fir_lms_delay_line.ptr_current = cyclic_add(ptr_fir_lms_delay_line.ptr_current, 1, ptr_fir_lms_delay_line.ptr_start, ptr_fir_lms_delay_line.buffer_len);
// Calculate the fir filter output on acc to get the canceller
acc_block_filt[0]= sig_calc_fir_lpdsp32_single(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs);
// Calculate the ouptut signal by c_block_pre - acc_block_filt
out_32[0] = c_block_pre[0] - acc_block_filt[0];
//if (counter >= 0){ //TODO: implement this and make it configurable
// Calculate the coefficient adaptation
//adapt_coeffs_generic_single(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32[0]);
adapt_coeffs_lpdsp32_single_v1(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32[0]);
//counter=0;
// }
// else{
// counter++;
// }
#else // Block processing
// Put the next block to the buffer
sig_circular_buffer_ptr_put_block(&ptr_fir_lms_delay_line, acc_block_pre);
// Calculate the fir filter output on acc to get the canceller
sig_calc_fir_lpdsp32_block(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, acc_block_filt);
// Calculate the ouptut signal by c_block_pre - acc_block_filt
for (int i=0; i<BLOCK_LEN; i++) chess_flatten_loop
{
//sig_cirular_buffer_ptr_put_sample(&lms->delay_line, acc_block_pre[i]);
//acc_block_filt[i]= sig_calc_fir_lpdsp32_single(lms);
out_32[i] = c_block_pre[i] - acc_block_filt[i]; // 15 cycles with 4 samples/block
// adapt the coefficients with respect to the last sample in the block
}
//adapt_coeffs_lpdsp32_single(lms, out_32[1]);
adapt_coeffs_lpdsp32_block(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32[0]);
// Increment the buffer pointer to get ready for the next block
//sig_cirular_buffer_ptr_increment(&lms->delay_line, BLOCK_LEN);
#endif
break;
case OUTPUT_MODE_FIR_LMS_LEAKY: // apply lms filter on cSensor signal
// Increment the buffer pointer and set the current sample to the delay line
sig_cirular_buffer_ptr_put_sample_DMB(&ptr_fir_lms_delay_line, acc_block_pre[0]);
// Calculate the fir filter output on acc to get the canceller
acc_block_filt[0]= sig_calc_fir_lpdsp32_single(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs);
// Calculate the ouptut signal by c_block_pre - acc_block_filt
out_32[0] = c_block_pre[0] - acc_block_filt[0];
//if (counter >= 0){ //TODO: implement this and make it configurable
// Calculate the coefficient adaptation
//adapt_coeffs_generic_single(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32[0]);
adapt_coeffs_lpdsp32_single_leaky(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32[0]);
break;
default: // MUTED
for (uint32_t i=0; i<BLOCK_LEN; i++){
out_32[i] = 0;
}
break;
}
// TODO: Add a couple of biqads after ANC
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_flatten_loop
{
#ifdef LPDSP16
out_16[i] = (int16_t) out_32[i];
#else
out_16[i] = rnd_saturate(to_accum(out_32[i]) >> BITSHIFT_16_TO_32); // 12 cycles for blocksize 4 //TODO: use rnd_saturate(out_32[i] >> input_nbit_bitshift)
#endif
}
//out_16[0] = cSensor[0];
}

View File

@@ -0,0 +1,140 @@
#ifndef SIGNAL_PATH_H
#define SIGNAL_PATH_H
#include <math.h>
#include <stdint.h>
#define MAX_DELAY_SAMPS 16
#if BLOCK_LEN > MAX_FIR_COEFFS
#error "BLOCK_LEN must be smaller than MAX_FIR_COEFFS"
#endif
#define BITSHIFT_16_TO_32 16
static const int block_len=BLOCK_LEN; // TODO: save this an an cm3 accessible location
#ifdef PLATFORM_GENERIC
typedef long int accum_t;
// empty Macros definitions
#define chess_storage(mem)
#define DMA
#define DMB
#define DMIO
#define chess_loop_range(a,b)
#define isr0(a)
#define chess_flatten_loop
#endif
typedef struct BufferPtr{ // used as a pointer and length storage container for cirular buffers
int buffer_len;
int *ptr_start;
int *ptr_current;
} BufferPtr;
typedef struct BufferPtrDMB{
int buffer_len;
int chess_storage(DMB) *ptr_start;
int chess_storage(DMB) *ptr_current;
} BufferPtrDMB;
/*Stuct for storage of internal state and configuration for single signal path with a biquad element, a scaling element and a delay*/
typedef struct SingleSignalPath{
int input_scale; // The scaling bitshift bits for the input signal
int x_nbit_bitshift; // The number of bits to scale the input signal
int preemph_activated; //Deactivate by initializing with coefficients {1., 0., 0., 0., 0.}
int b_preemph[5]; // Preemphasis filter coefficients
int _preemph_scale_nbits; // The number of bits used to scale the pre emphasis filter
int _xd[2]; //preemphasis biquad filter buffers
int _yd[2];
int _delay_buffer[MAX_DELAY_SAMPS]; // The delay buffer for the given signal path // chess_storage(DMA)
BufferPtr delay_buffer; // The pointers to the delay buffer and actual used length
int n_delay_samps; // The delay for the given signal path in samples
int weight_actived; //Deactivate by initializing with weight 1.0
int weight; // The weight for the given signal path
int _weight_scale_nbits; // The number of bits used to scale the weight
} SingleSignalPath;
/*Stuct for storage of internal state and configuration for an adaptive fir-lms filter*/
// typedef struct LmsFilter{
// int lms_mu; // The learning rate for the lms algorithm
// int lms_num_fir_coeffs; // Number of coefficients for the adaptive filter
// #if BLOCK_LEN == 1
// //int _delay_line[MAX_FIR_COEFFS]; // The delay line for the adaptive filter //
// BufferDMB delay_line; // The pointer to the delay line
// //int chess_storage(DMB) *ptr_delay_line_current; // The pointer to the current position in the delay line
// #else
// //int chess_storage(%(sizeof(long long))) _delay_line[BLOCK_LEN + MAX_FIR_COEFFS]; // The delay line for the adaptive filter
// BufferPtr delay_line; // The pointer to the delay line
// //int chess_storage(DMA) *ptr_delay_line_current; // The pointer to the current position in the delay line
// //int chess_storage(%(sizeof(long long))) fir_coeffs[MAX_FIR_COEFFS]; // The coefficients for the adaptive filter
// #endif
// } LmsFilter;
// #if BLOCK_LEN == 1
// int fir_lms_coeffs[MAX_FIR_COEFFS]; // The coefficients for the adaptive filter //
// #else
// int chess_storage(%(sizeof(long long))) fir_lms_coeffs[MAX_FIR_COEFFS]; // The coefficients for the adaptive filter
// #endif
#if BLOCK_LEN == 1
BufferPtr extern ptr_fir_lms_coeffs;
BufferPtrDMB extern chess_storage(DMB) ptr_fir_lms_delay_line;
int extern chess_storage(DMB) fir_lms_delay_line[MAX_FIR_COEFFS];
#else
int extern chess_storage(DMA%(sizeof(long long))) fir_lms_delay_line[BLOCK_LEN + MAX_FIR_COEFFS]; // The delay line for the adaptive filter
BufferPtr extern ptr_fir_lms_delay_line;
BufferPtr extern ptr_fir_lms_coeffs;
#endif
//int extern chess_storage(DMA % (sizeof(long long))) fir_lms_coeffs[MAX_FIR_COEFFS]; // The coefficients for the adaptive filter
// typedef struct SignalPath{
// SingleSignalPath cSensorSignal;
// SingleSignalPath accSensorSignal;
// LmsFilter lms;
// volatile int chess_storage(DMIO:INPUT_PORT_ADD) input_port;
// int chess_storage(DMIO:OUTPUT_PORT_ADD) output_port;
// } SignalPath;
typedef enum OutputMode{
OUTPUT_MODE_C_SENSOR,
OUTPUT_MODE_ACC_SENSOR,
OUTPUT_MODE_FIR_LMS,
OUTPUT_MODE_FIR,
OUTPUT_MODE_FIR_LMS_LEAKY,
}OutputMode;
// void sig_init_preemph_coef(SingleSignalPath *signal, double b0, double b1, double b2, double a1, double a2, int scale_bits);
// int sig_init_delay(SingleSignalPath *signal, int delay_samps);
// void sig_init_weight(SingleSignalPath *signal, double weight, int scale_nbits);
// void sig_init_lms(LmsFilter *signal, double lms_mu, int lms_fir_num_coeffs, int scale_bits);
// int inline sig_delay_buffer_load_and_get(SingleSignalPath *signal, int x);
// int inline sig_calc_biquad(SingleSignalPath *signal, int x); //TODO: inline ?
// int inline sig_calc_weight(SingleSignalPath *signal, int x); //TODO: inline ?
// int inline sig_calc_fir_lms_single(LmsFilter *signal, int d, int x); //TODO: inline ?
//void adapt_coeffs_lpdsp32_single(LmsFilter chess_storage(DMB) *filter, int *fir_lms_coeffs, int out);
//sig_calc_fir_lpdsp32_single(BufferPtr *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs)
// top level init and calc functions
void init(
SingleSignalPath *cSensorSignal, SingleSignalPath *accSensorSignal,
//BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs,
double *b_c, double *b_acc, int delay_c, int delay_acc, double weight_c, double weight_acc, double lms_mu, int lms_fir_num_coeffs);
void calc(
SingleSignalPath *cSensorSignal, SingleSignalPath *accSensorSignal,
//BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs,
OutputMode output_mode,
#if BLOCK_LEN != 1
int16_t *cSensor,
int16_t *accSensor,
#else
int16_t volatile chess_storage(DMB) *cSensor,
int16_t volatile chess_storage(DMB) *accSensor,
#endif
int16_t volatile chess_storage(DMB) *out_16
);
#endif //SIGNAL_PATH_H