Ordnerstruktur geändert
This commit is contained in:
141
code_phangl/signalProcessing/include/signal_path.h
Normal file
141
code_phangl/signalProcessing/include/signal_path.h
Normal file
@@ -0,0 +1,141 @@
|
||||
ifndef SIGNAL_PATH_H
|
||||
#define SIGNAL_PATH_H
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#define MAX_DELAY_SAMPS 16
|
||||
#if BLOCK_LEN > MAX_FIR_COEFFS
|
||||
#error "BLOCK_LEN must be smaller than MAX_FIR_COEFFS"
|
||||
#endif
|
||||
#define BITSHIFT_16_TO_32 16
|
||||
|
||||
static const int block_len=BLOCK_LEN; // TODO: save this an an cm3 accessible location
|
||||
|
||||
#ifdef PLATFORM_GENERIC
|
||||
typedef long int accum_t;
|
||||
// empty Macros definitions
|
||||
#define chess_storage(mem)
|
||||
#define DMA
|
||||
#define DMB
|
||||
#define DMIO
|
||||
#define chess_loop_range(a,b)
|
||||
#define isr0(a)
|
||||
#define chess_flatten_loop
|
||||
#endif
|
||||
|
||||
typedef struct BufferPtr{ // used as a pointer and length storage container for cirular buffers
|
||||
int buffer_len;
|
||||
int *ptr_start;
|
||||
int *ptr_current;
|
||||
} BufferPtr;
|
||||
|
||||
typedef struct BufferPtrDMB{
|
||||
int buffer_len;
|
||||
int chess_storage(DMB) *ptr_start;
|
||||
int chess_storage(DMB) *ptr_current;
|
||||
} BufferPtrDMB;
|
||||
|
||||
/*Stuct for storage of internal state and configuration for single signal path with a biquad element, a scaling element and a delay*/
|
||||
typedef struct SingleSignalPath{
|
||||
int input_scale; // The scaling bitshift bits for the input signal
|
||||
int x_nbit_bitshift; // The number of bits to scale the input signal
|
||||
int preemph_activated; //Deactivate by initializing with coefficients {1., 0., 0., 0., 0.}
|
||||
int b_preemph[5]; // Preemphasis filter coefficients
|
||||
int _preemph_scale_nbits; // The number of bits used to scale the pre emphasis filter
|
||||
int _xd[2]; //preemphasis biquad filter buffers
|
||||
int _yd[2];
|
||||
int _delay_buffer[MAX_DELAY_SAMPS]; // The delay buffer for the given signal path // chess_storage(DMA)
|
||||
BufferPtr delay_buffer; // The pointers to the delay buffer and actual used length
|
||||
int n_delay_samps; // The delay for the given signal path in samples
|
||||
int weight_actived; //Deactivate by initializing with weight 1.0
|
||||
int weight; // The weight for the given signal path
|
||||
int _weight_scale_nbits; // The number of bits used to scale the weight
|
||||
} SingleSignalPath;
|
||||
|
||||
|
||||
/*Stuct for storage of internal state and configuration for an adaptive fir-lms filter*/
|
||||
// typedef struct LmsFilter{
|
||||
// int lms_mu; // The learning rate for the lms algorithm
|
||||
// int lms_num_fir_coeffs; // Number of coefficients for the adaptive filter
|
||||
// #if BLOCK_LEN == 1
|
||||
// //int _delay_line[MAX_FIR_COEFFS]; // The delay line for the adaptive filter //
|
||||
// BufferDMB delay_line; // The pointer to the delay line
|
||||
// //int chess_storage(DMB) *ptr_delay_line_current; // The pointer to the current position in the delay line
|
||||
// #else
|
||||
// //int chess_storage(%(sizeof(long long))) _delay_line[BLOCK_LEN + MAX_FIR_COEFFS]; // The delay line for the adaptive filter
|
||||
// BufferPtr delay_line; // The pointer to the delay line
|
||||
// //int chess_storage(DMA) *ptr_delay_line_current; // The pointer to the current position in the delay line
|
||||
// //int chess_storage(%(sizeof(long long))) fir_coeffs[MAX_FIR_COEFFS]; // The coefficients for the adaptive filter
|
||||
// #endif
|
||||
// } LmsFilter;
|
||||
// #if BLOCK_LEN == 1
|
||||
// int fir_lms_coeffs[MAX_FIR_COEFFS]; // The coefficients for the adaptive filter //
|
||||
// #else
|
||||
// int chess_storage(%(sizeof(long long))) fir_lms_coeffs[MAX_FIR_COEFFS]; // The coefficients for the adaptive filter
|
||||
// #endif
|
||||
|
||||
#if BLOCK_LEN == 1
|
||||
BufferPtr extern ptr_fir_lms_coeffs;
|
||||
BufferPtrDMB extern chess_storage(DMB) ptr_fir_lms_delay_line;
|
||||
int extern chess_storage(DMB) fir_lms_delay_line[MAX_FIR_COEFFS];
|
||||
|
||||
#else
|
||||
int extern chess_storage(DMA%(sizeof(long long))) fir_lms_delay_line[BLOCK_LEN + MAX_FIR_COEFFS]; // The delay line for the adaptive filter
|
||||
BufferPtr extern ptr_fir_lms_delay_line;
|
||||
BufferPtr extern ptr_fir_lms_coeffs;
|
||||
#endif
|
||||
|
||||
//int extern chess_storage(DMA % (sizeof(long long))) fir_lms_coeffs[MAX_FIR_COEFFS]; // The coefficients for the adaptive filter
|
||||
|
||||
// typedef struct SignalPath{
|
||||
// SingleSignalPath cSensorSignal;
|
||||
// SingleSignalPath accSensorSignal;
|
||||
// LmsFilter lms;
|
||||
// volatile int chess_storage(DMIO:INPUT_PORT_ADD) input_port;
|
||||
// int chess_storage(DMIO:OUTPUT_PORT_ADD) output_port;
|
||||
// } SignalPath;
|
||||
|
||||
typedef enum OutputMode{
|
||||
OUTPUT_MODE_C_SENSOR,
|
||||
OUTPUT_MODE_ACC_SENSOR,
|
||||
OUTPUT_MODE_FIR_LMS,
|
||||
OUTPUT_MODE_FIR,
|
||||
OUTPUT_MODE_FIR_LMS_LEAKY,
|
||||
}OutputMode;
|
||||
|
||||
// void sig_init_preemph_coef(SingleSignalPath *signal, double b0, double b1, double b2, double a1, double a2, int scale_bits);
|
||||
// int sig_init_delay(SingleSignalPath *signal, int delay_samps);
|
||||
// void sig_init_weight(SingleSignalPath *signal, double weight, int scale_nbits);
|
||||
// void sig_init_lms(LmsFilter *signal, double lms_mu, int lms_fir_num_coeffs, int scale_bits);
|
||||
// int inline sig_delay_buffer_load_and_get(SingleSignalPath *signal, int x);
|
||||
// int inline sig_calc_biquad(SingleSignalPath *signal, int x); //TODO: inline ?
|
||||
// int inline sig_calc_weight(SingleSignalPath *signal, int x); //TODO: inline ?
|
||||
// int inline sig_calc_fir_lms_single(LmsFilter *signal, int d, int x); //TODO: inline ?
|
||||
|
||||
//void adapt_coeffs_lpdsp32_single(LmsFilter chess_storage(DMB) *filter, int *fir_lms_coeffs, int out);
|
||||
//sig_calc_fir_lpdsp32_single(BufferPtr *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs)
|
||||
|
||||
|
||||
|
||||
// top level init and calc functions
|
||||
void init(
|
||||
SingleSignalPath *cSensorSignal, SingleSignalPath *accSensorSignal,
|
||||
//BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs,
|
||||
double *b_c, double *b_acc, int delay_c, int delay_acc, double weight_c, double weight_acc, double lms_mu, int lms_fir_num_coeffs);
|
||||
void calc(
|
||||
SingleSignalPath *cSensorSignal, SingleSignalPath *accSensorSignal,
|
||||
//BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs,
|
||||
OutputMode output_mode,
|
||||
#if BLOCK_LEN != 1
|
||||
int16_t *cSensor,
|
||||
int16_t *accSensor,
|
||||
#else
|
||||
int16_t volatile chess_storage(DMB) *cSensor,
|
||||
int16_t volatile chess_storage(DMB) *accSensor,
|
||||
#endif
|
||||
int16_t volatile chess_storage(DMB) *out_16
|
||||
);
|
||||
|
||||
#endif //SIGNAL_PATH_H
|
||||
|
||||
398
code_phangl/signalProcessing/signal_path.c
Normal file
398
code_phangl/signalProcessing/signal_path.c
Normal file
@@ -0,0 +1,398 @@
|
||||
#include "include/signal_path.h"
|
||||
#define BLOCK_LEN 1
|
||||
|
||||
/* Global variables decleration*/
|
||||
static int counter=0;
|
||||
static int mu;
|
||||
|
||||
static int leak=2147462173; //0.999 // (1 ? µ?)
|
||||
|
||||
|
||||
int chess_storage(DMB) fir_lms_delay_line[MAX_FIR_COEFFS];
|
||||
BufferPtrDMB chess_storage(DMB) ptr_fir_lms_delay_line;
|
||||
BufferPtr ptr_fir_lms_coeffs;
|
||||
|
||||
int chess_storage(DMA % (sizeof(long long))) fir_lms_coeffs[MAX_FIR_COEFFS]; // The coefficients for the adaptive filter
|
||||
|
||||
|
||||
#ifdef PLATFORM_GENERIC
|
||||
// lpdsp32 functionallity moddeling functions
|
||||
accum_t fract_mult(int a, int b){
|
||||
long int a_long = a;
|
||||
long int b_long = b;
|
||||
return (b_long * a_long);
|
||||
}
|
||||
accum_t to_accum(int a){
|
||||
long int a_long = (long int) a;
|
||||
return a_long << 31;
|
||||
}
|
||||
int rnd_saturate(accum_t a){
|
||||
return a >> 31;
|
||||
}
|
||||
int extract_high(accum_t a){
|
||||
return a >> 31;
|
||||
}
|
||||
void lldecompose(unsigned long long l, int* int1, int* int2){
|
||||
*int2 = (int)(l >> 32);
|
||||
*int1 = (int)(l);
|
||||
}
|
||||
uint64_t llcompose(int a, int b) {
|
||||
uint64_t result = (uint64_t)b; // Assign b to the higher 32 bits of the result
|
||||
result <<= 32; // Shift the higher 32 bits to the left
|
||||
result |= (uint32_t)a; // Bitwise OR operation with the lower 32 bits of a
|
||||
return result;
|
||||
}
|
||||
// unsigned long long llcompose(int a, int b){
|
||||
// unsigned long long l;
|
||||
// l = a << 32;
|
||||
// l |= b;
|
||||
// return l;
|
||||
//}
|
||||
int* cyclic_add(int *ptr, int i_pp, int *ptr_start, int buffer_len){
|
||||
int *p_ptr=ptr;
|
||||
for (int i=0; i < abs(i_pp); i+=1){ // end of buffer wraparound
|
||||
if (i_pp > 0){
|
||||
p_ptr ++;
|
||||
if (p_ptr >= ptr_start + buffer_len){
|
||||
p_ptr=ptr_start;
|
||||
}
|
||||
}
|
||||
else{ // start of buffer wraparound
|
||||
p_ptr--;
|
||||
if (p_ptr < ptr_start){
|
||||
p_ptr=ptr_start + (buffer_len -1);
|
||||
}
|
||||
}
|
||||
}
|
||||
return p_ptr;
|
||||
}
|
||||
#endif
|
||||
|
||||
int sig_init_buffer(BufferPtr *buffer, int *buffer_start_add, int length, int max_buffer_len) {
|
||||
buffer->buffer_len = length;
|
||||
buffer->ptr_start = buffer_start_add;
|
||||
buffer->ptr_current = buffer_start_add;
|
||||
// initialize delay line with 0
|
||||
for (int i = 0; i < length; i++) {
|
||||
buffer_start_add[i] = 0;
|
||||
}
|
||||
if (length<max_buffer_len){
|
||||
return 0;
|
||||
}
|
||||
else{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
int sig_init_buffer_DMB(BufferPtrDMB chess_storage(DMB) *buffer, int chess_storage(DMB) *buffer_start_add, int length, int max_buffer_len){
|
||||
buffer->buffer_len = length;
|
||||
buffer->ptr_start = buffer_start_add;
|
||||
buffer->ptr_current = buffer_start_add;
|
||||
// initialize delay line with 0
|
||||
for (int i = 0; i < length; i++) {
|
||||
buffer_start_add[i] = 0;
|
||||
}
|
||||
if (length<max_buffer_len){
|
||||
return 0;
|
||||
}
|
||||
else{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
void sig_cirular_buffer_ptr_increment(BufferPtr *buffer, int i_incr){
|
||||
buffer->ptr_current = cyclic_add(buffer->ptr_current, i_incr, buffer->ptr_start, buffer->buffer_len);
|
||||
}
|
||||
|
||||
void sig_cirular_buffer_ptr_increment_DMB(BufferPtrDMB *buffer, int i_incr){
|
||||
buffer->ptr_current = cyclic_add(buffer->ptr_current, i_incr, buffer->ptr_start, buffer->buffer_len);
|
||||
}
|
||||
|
||||
void sig_cirular_buffer_ptr_put_sample(BufferPtr *buffer, int sample){
|
||||
*buffer->ptr_current = sample;
|
||||
buffer->ptr_current = cyclic_add(buffer->ptr_current, 1, buffer->ptr_start, buffer->buffer_len);
|
||||
}
|
||||
|
||||
void sig_cirular_buffer_ptr_put_sample_DMB(BufferPtrDMB chess_storage(DMB) *buffer, int sample){
|
||||
*buffer->ptr_current = sample;
|
||||
buffer->ptr_current = cyclic_add(buffer->ptr_current, 1, buffer->ptr_start, buffer->buffer_len);
|
||||
}
|
||||
|
||||
void static inline sig_circular_buffer_ptr_put_block(BufferPtr *buffer, int* block){
|
||||
// increment pointer to oldest block
|
||||
//buffer->ptr_current = cyclic_add(buffer->ptr_current, BLOCK_LEN, buffer->ptr_start, buffer->buffer_len);
|
||||
// load the next block
|
||||
for (int i=0; i<BLOCK_LEN; i+=2){
|
||||
buffer->ptr_current[0] = block[i]; // TODO: use llcompose
|
||||
buffer->ptr_current[1] = block[i+1];
|
||||
buffer->ptr_current = cyclic_add(buffer->ptr_current, 2, buffer->ptr_start, buffer->buffer_len);
|
||||
}
|
||||
}
|
||||
|
||||
//Initialisierungsfunktion für Biquad Filter Koeffizienten
|
||||
void sig_init_preemph_coef(SingleSignalPath *signal, double b0, double b1, double b2, double a1, double a2, int scale_bits) {
|
||||
// Wenn b0=1 und Rest 0 -> kein Filter weil effektiv 1*Xn
|
||||
if (b0 == 1. && b1 == 0. && b2 == 0. && a1 == 0. && a2 == 0.) {
|
||||
signal->preemph_activated = 0;
|
||||
}
|
||||
else{
|
||||
signal->preemph_activated = 1; // Schreibe Eintrag in Struct
|
||||
signal->_preemph_scale_nbits = scale_bits; // Schreibe Eintrag in Struct - wieviel Bits wird skaliert
|
||||
int scale = pow(2, scale_bits) - 1; //2^n -1 Skalierung
|
||||
// Skaliere Koeffizienten zu Interger und schreibe Eintrag in Struct
|
||||
signal->b_preemph[0] = b0 * scale;
|
||||
signal->b_preemph[1] = b1 * scale;
|
||||
signal->b_preemph[2] = b2 * scale;
|
||||
signal->b_preemph[3] = a1 * scale;
|
||||
signal->b_preemph[4] = a2 * scale;
|
||||
}
|
||||
}
|
||||
|
||||
/*Initialization functions - make sure all of them were called to ensure functionality*/
|
||||
int sig_init_delay(SingleSignalPath *signal, int n_delay) {
|
||||
return sig_init_buffer(&signal->delay_buffer, signal->_delay_buffer, n_delay, MAX_DELAY_SAMPS);
|
||||
}
|
||||
|
||||
//Initialisierungsfunktion für Gewichtung
|
||||
void sig_init_weight(SingleSignalPath *signal, double weight, int scale_nbits) {
|
||||
// Wenn Gewichtung 1 -> kein Effekt
|
||||
if (weight == 1.) {
|
||||
signal->weight_actived = 0;
|
||||
}
|
||||
// Wenn Gewichtung != 1 -> Zu Integer skalieren und Eintrag in Struct schreiben
|
||||
else{
|
||||
signal->weight_actived = 1;
|
||||
int scale = pow(2, scale_nbits) - 1;
|
||||
signal->weight = weight * scale;
|
||||
signal->_weight_scale_nbits = scale_nbits;
|
||||
}
|
||||
}
|
||||
|
||||
/*Calculator functions for the given signal path*/
|
||||
/*Calculate one biquad filter element*/
|
||||
int sig_calc_biquad(SingleSignalPath *signal, int x) {
|
||||
if (signal->preemph_activated == 0) {
|
||||
return x;
|
||||
}
|
||||
accum_t sum =
|
||||
fract_mult(x, signal->b_preemph[0]) + fract_mult(signal->_xd[0], signal->b_preemph[1]) +
|
||||
fract_mult(signal->_xd[1], signal->b_preemph[2]) + fract_mult(signal->_yd[0], signal->b_preemph[3]) +
|
||||
fract_mult(signal->_yd[1],signal->b_preemph[4]);
|
||||
int y = rnd_saturate(sum << 1);
|
||||
|
||||
|
||||
signal->_xd[1] = signal->_xd[0];
|
||||
signal->_xd[0] = x;
|
||||
signal->_yd[1] = signal->_yd[0];
|
||||
signal->_yd[0] = y;
|
||||
return y;
|
||||
}
|
||||
int inline sig_get_delayed_sample(SingleSignalPath *signal) {
|
||||
return *signal->delay_buffer.ptr_current;
|
||||
}
|
||||
|
||||
int sig_delay_buffer_load_and_get(SingleSignalPath *signal, int x) {
|
||||
if (signal->delay_buffer.buffer_len == 0) {
|
||||
return x;
|
||||
}
|
||||
int out = *signal->delay_buffer.ptr_current;
|
||||
*signal->delay_buffer.ptr_current = x;
|
||||
sig_cirular_buffer_ptr_increment(&signal->delay_buffer, 1);
|
||||
return out;
|
||||
}
|
||||
|
||||
int sig_calc_weight(SingleSignalPath *signal, int x) {
|
||||
if (signal->weight_actived == 0) {
|
||||
return x;
|
||||
}
|
||||
accum_t acc = fract_mult(x, signal->weight);
|
||||
|
||||
return rnd_saturate(acc);
|
||||
}
|
||||
|
||||
int inline sig_calc_fir_lpdsp32_single(BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs){
|
||||
|
||||
// Calculate the fir filter output on x to get the canceller
|
||||
int chess_storage(DMB) *p_x0 = ptr_fir_lms_delay_line->ptr_current; // chess_storage(DMB)
|
||||
int chess_storage(DMB) *px_start = ptr_fir_lms_delay_line->ptr_start;
|
||||
int *p_h = ptr_fir_lms_coeffs->ptr_current;
|
||||
int delay_line_len = ptr_fir_lms_delay_line->buffer_len;
|
||||
int n_coeff = ptr_fir_lms_coeffs->buffer_len;
|
||||
|
||||
int d0,d1,h0,h1;
|
||||
accum_t acc1_A = to_accum(0);
|
||||
accum_t acc1_B = to_accum(0);
|
||||
accum_t acc1_C;
|
||||
|
||||
// iterate over the coefficients to calculate the filter on x - the canceller
|
||||
/* Abschaetzung cycles per 2coefficient:
|
||||
dual - load : 1
|
||||
dual mac and dual load: 1
|
||||
-> 48/2 * 2 = 48 cycles for 48 coefficents
|
||||
*/
|
||||
for (int i=0; i < n_coeff; i+=2) chess_loop_range(1,){
|
||||
// Use dual load and dual pointer update
|
||||
d0 = *p_x0;
|
||||
h0 = *p_h;
|
||||
p_h++;
|
||||
p_x0 = cyclic_add(p_x0, -1, px_start, delay_line_len);
|
||||
|
||||
d1 = *p_x0;
|
||||
h1 = *p_h;
|
||||
p_h++;
|
||||
p_x0 = cyclic_add(p_x0, -1, px_start, delay_line_len);
|
||||
|
||||
acc1_A+=fract_mult(d0, h0);
|
||||
acc1_B+=fract_mult(d1, h1);
|
||||
#ifndef LPDSP16
|
||||
acc1_A = to_accum(rnd_saturate(acc1_A));
|
||||
acc1_B = to_accum(rnd_saturate(acc1_B));
|
||||
#endif
|
||||
|
||||
}
|
||||
// Calculate the output sample
|
||||
acc1_C = acc1_A + acc1_B;
|
||||
//out32 = rnd_saturate(acc1_A);
|
||||
return rnd_saturate(acc1_C);
|
||||
}
|
||||
|
||||
void static inline adapt_coeffs_lpdsp32_single_v1(BufferPtrDMB chess_storage(DMB) *ptr_fir_lms_delay_line, BufferPtr *ptr_fir_lms_coeffs, int out){
|
||||
|
||||
int chess_storage(DMA) *p_h0 = ptr_fir_lms_coeffs->ptr_start; //coeff load pointer
|
||||
//int chess_storage(DMA) *p_h1 = ptr_fir_lms_coeffs->ptr_start; //coeff store pointer
|
||||
int chess_storage(DMB) *p_x0 = ptr_fir_lms_delay_line->ptr_current; // chess_storage(DMB)
|
||||
int chess_storage(DMB) *p_x1 = ptr_fir_lms_delay_line->ptr_current; // chess_storage(DMB)
|
||||
|
||||
p_x1 = cyclic_add(p_x1, -1, ptr_fir_lms_delay_line->ptr_start, ptr_fir_lms_delay_line->buffer_len);
|
||||
|
||||
int prod, x0, x1, h0, h1;
|
||||
int chess_storage(DMB) *px_start = ptr_fir_lms_delay_line->ptr_start;
|
||||
int delay_line_len = ptr_fir_lms_delay_line->buffer_len;
|
||||
int n_coeff = ptr_fir_lms_coeffs->buffer_len;
|
||||
|
||||
accum_t acc_A, acc_B;
|
||||
|
||||
// Calculate the first term of the coefficient adaption
|
||||
accum_t acc_C = fract_mult(mu, out);
|
||||
prod = rnd_saturate(acc_C);
|
||||
|
||||
/* Abschätzung cycles per 2 coefficient:
|
||||
dual load coeffs: 1
|
||||
single load tab value: 2
|
||||
dual mac: 1
|
||||
dual rnd_sat - store: 1
|
||||
load/store hazard nop: 1
|
||||
*/
|
||||
for (int i=0; i< n_coeff; i+=2) chess_loop_range(1,){
|
||||
// Calculate the coefficient wise adaption
|
||||
#ifdef PLATFORM_GENERIC
|
||||
lldecompose(*((long long *)p_h0), &h0, &h1);
|
||||
#else
|
||||
lldecompose(*((long long *)p_h0), h0, h1);
|
||||
#endif
|
||||
|
||||
acc_A = to_accum(h0);
|
||||
acc_B = to_accum(h1);
|
||||
|
||||
acc_A += fract_mult(prod, *p_x0); // TODO: This could be further optimized by using all 4 available accums?
|
||||
acc_B += fract_mult(prod, *p_x1);
|
||||
|
||||
p_x0 = cyclic_add(p_x0, -2, px_start, delay_line_len);
|
||||
p_x1 = cyclic_add(p_x1, -2, px_start, delay_line_len);
|
||||
|
||||
// update the current filter coefficients - dual sat; dual store
|
||||
*((long long *)p_h0) = llcompose(rnd_saturate(acc_A), rnd_saturate(acc_B));//load/store hazard ! - 1 nop is needed
|
||||
p_h0+=2;
|
||||
}
|
||||
}
|
||||
|
||||
void init(
|
||||
SingleSignalPath *cSensorSignal,
|
||||
SingleSignalPath *accSensorSignal,
|
||||
double *b_c,
|
||||
double *b_acc,
|
||||
int delay_c,
|
||||
int delay_acc,
|
||||
double weight_c,
|
||||
double weight_acc,
|
||||
double lms_mu,
|
||||
int lms_fir_num_coeffs
|
||||
){
|
||||
int scale_bits=31;
|
||||
|
||||
// C-Sensor Initialisierung: Biquad, Delay, Weight skalieren und in Struct schreiben
|
||||
sig_init_preemph_coef(cSensorSignal, b_c[0], b_c[1], b_c[2], b_c[3], b_c[4], scale_bits);
|
||||
sig_init_delay(cSensorSignal, delay_c);
|
||||
sig_init_weight(cSensorSignal, weight_c, scale_bits);
|
||||
|
||||
// Acc-Sensor Initialisierung: Biquad, Delay, Weight skalieren und in Struct schreiben
|
||||
sig_init_preemph_coef(accSensorSignal, b_acc[0], b_acc[1], b_acc[2], b_acc[3], b_acc[4], scale_bits);
|
||||
sig_init_delay(accSensorSignal, delay_acc);
|
||||
sig_init_weight(accSensorSignal, weight_acc, 31);
|
||||
|
||||
//Mu Skalierung und in globale Variable schreiben
|
||||
int scale = pow(2, scale_bits) - 1;
|
||||
mu = lms_mu * scale;
|
||||
// Buffer Initialisierung (Delay Line und Koeffizienten) und anschließend alle Werte auf 0 setzen
|
||||
sig_init_buffer_DMB(&ptr_fir_lms_delay_line, fir_lms_delay_line, lms_fir_num_coeffs, MAX_FIR_COEFFS);
|
||||
sig_init_buffer(&ptr_fir_lms_coeffs, fir_lms_coeffs, lms_fir_num_coeffs, MAX_FIR_COEFFS);
|
||||
|
||||
for (int i = 0; i < lms_fir_num_coeffs; i++) {
|
||||
ptr_fir_lms_delay_line.ptr_start[i] = 0;
|
||||
ptr_fir_lms_coeffs.ptr_start[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Data d(cSensor) is signal + noise
|
||||
// x (accSensor) is reference noise signal
|
||||
void calc(
|
||||
SingleSignalPath *cSensorSignal,
|
||||
SingleSignalPath *accSensorSignal,
|
||||
OutputMode output_mode,
|
||||
int16_t volatile chess_storage(DMB) *cSensor,
|
||||
int16_t volatile chess_storage(DMB) *accSensor,
|
||||
int16_t volatile chess_storage(DMB) *out_16
|
||||
|
||||
){
|
||||
static int chess_storage(DMA) c_block_pre[BLOCK_LEN];
|
||||
static int chess_storage(DMA) acc_block_pre[BLOCK_LEN];
|
||||
static int chess_storage(DMA) cSensor_32[BLOCK_LEN];
|
||||
static int chess_storage(DMA) accSensor_32[BLOCK_LEN];
|
||||
|
||||
static int chess_storage(DMB) acc_block_filt[BLOCK_LEN];
|
||||
static int chess_storage(DMB) out_32[BLOCK_LEN];
|
||||
|
||||
static int chess_storage(DMA) *p_c_block_pre =c_block_pre;
|
||||
static int chess_storage(DMA) *p_acc_block_filt =acc_block_pre;
|
||||
static int chess_storage(DMB) *p_out_32=out_32;
|
||||
|
||||
|
||||
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_loop_range(1,){
|
||||
cSensor_32[i] = ((int) cSensor[i]) << BITSHIFT_16_TO_32;
|
||||
accSensor_32[i] = ((int) accSensor[i]) << BITSHIFT_16_TO_32;
|
||||
}
|
||||
|
||||
// Apply bitshift, calculate the pre emphasis filter, delay and weight to each channel
|
||||
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_loop_range(1,){
|
||||
c_block_pre[i] = cSensor_32[i];
|
||||
acc_block_pre[i] = accSensor_32[i];
|
||||
}
|
||||
|
||||
// apply lms filter on cSensor signal
|
||||
// Increment the buffer pointer and set the current sample to the delay line
|
||||
sig_cirular_buffer_ptr_put_sample_DMB(&ptr_fir_lms_delay_line, acc_block_pre[0]);
|
||||
// Calculate the fir filter output on acc to get the canceller
|
||||
acc_block_filt[0]= sig_calc_fir_lpdsp32_single(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs);
|
||||
// Calculate the ouptut signal by c_block_pre - acc_block_filt
|
||||
out_32[0] = c_block_pre[0] - acc_block_filt[0];
|
||||
// Calculate the coefficient adaptation
|
||||
adapt_coeffs_lpdsp32_single_v1(&ptr_fir_lms_delay_line, &ptr_fir_lms_coeffs, out_32[0]);
|
||||
|
||||
// TODO: Add a couple of biqads after ANC
|
||||
for (uint32_t i=0; i<BLOCK_LEN; i++) chess_flatten_loop
|
||||
{
|
||||
out_16[i] = rnd_saturate(to_accum(out_32[i]) >> BITSHIFT_16_TO_32); // 12 cycles for blocksize 4 //TODO: use rnd_saturate(out_32[i] >> input_nbit_bitshift)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user